Energy News
CHIP TECH
AI-enabled atomic robotic probe to advance quantum material manufacturing
Demonstration of the AI-driven chemist-intuited atomic robotic probe.
AI-enabled atomic robotic probe to advance quantum material manufacturing
by Staff Writers for NUS News
Singapore (SPX) Mar 04, 2024

Scientists from the National University of Singapore (NUS) have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence (AI) at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.

Open-shell magnetic nanographenes represent a technologically appealing class of new carbon-based quantum materials, which host robust p-spin centres and non-trivial collective quantum magnetism. These properties are crucial for developing high-speed electronic devices at the molecular level and creating quantum bits, the building blocks of quantum computers. Despite significant advancements in the synthesis of these materials through on-surface synthesis, a type of solid-phase chemical reaction, achieving precise fabrication and tailoring of the properties of these quantum materials at the atomic level has remained a challenge.

The research team, led by Associate Professor LU Jiong from the NUS Department of Chemistry and the Institute for Functional Intelligent Materials together with Associate Professor ZHANG Chun from the NUS Department of Physics, have introduced the concept of the chemist-intuited atomic robotic probe (CARP) by integrating probe chemistry knowledge and artificial intelligence to fabricate and characterise open-shell magnetic nanographenes at the single-molecule level. This allows for precise engineering of their p-electron topology and spin configurations in an automated manner, mirroring the capabilities of human chemists.

The CARP concept, utilises deep neural networks trained using the experience and knowledge of surface science chemists, to autonomously synthesize open-shell magnetic nanographenes. It can also extract chemical information from the experimental training database, offering conjunctures about unknown mechanisms. This serves as an essential supplement to theoretical simulations, contributing to a more comprehensive understanding of probe chemistry reaction mechanisms. The research work is a collaboration involving Associate Professor WANG Xiaonan from Tsinghua University in China.

The research findings are published in the journal Nature Synthesis on 29 February 2024.

The researchers tested the CARP concept on a complicated site-selective cyclodehydrogenation reaction used for producing chemical compounds with specific structural and electronic properties. Results show that the CARP framework can efficiently adopt the expert knowledge of the scientist and convert it into machine-understandable tasks, mimicking the workflow to perform single-molecule reactions that can manipulate the geometric shape and spin characteristic of the final chemical compound.

In addition, the research team aims to harness the full potential of AI capabilities by extracting hidden insights from the database. They established a smart learning paradigm using a game theory-based approach to examine the framework's learning outcomes. The analysis shows that CARP effectively captured important details that humans might miss, especially when it comes to making the cyclodehydrogenation reaction successful. This suggests that the CARP framework could be a valuable tool for gaining additional insights into the mechanisms of unexplored single-molecule reactions.

Assoc Prof Lu said, "Our main goal is to work at the atomic level to create, study and control these quantum materials. We are striving to revolutionise the production of these materials on surfaces to enable more control over their outcomes, right down to the level of individual atoms and bonds.

"Our goal in the near future is to extend the CARP framework further to adopt versatile on-surface probe chemistry reactions with scale and efficiency. This has the potential to transform conventional laboratory-based on-surface synthesis process towards on-chip fabrication for practical applications. Such transformation could play a pivotal role in accelerating the fundamental research of quantum materials and usher in a new era of intelligent atomic fabrication," added Assoc Prof Lu.

Research Report:Intelligent synthesis of magnetic nanographenes via chemist-intuited atomic robotic probe

Related Links
National University of Singapore
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Startup accelerates progress toward light-speed computing
Boston MA (SPX) Mar 04, 2024
Our ability to cram ever-smaller transistors onto a chip has enabled today's age of ubiquitous computing. But that approach is finally running into limits, with some experts declaring an end to Moore's Law and a related principle, known as Dennard's Scaling. Those developments couldn't be coming at a worse time. Demand for computing power has skyrocketed in recent years thanks in large part to the rise of artificial intelligence, and it shows no signs of slowing down. Now Lightmatter, a comp ... read more

CHIP TECH
Sounding warning, Kerry urges new ways on climate finance

Sri Lanka awards energy deal to India after rejecting China

Climate perils costing US 0.4% of its GDP: Swiss Re

World needs 'trillions' for climate action: COP28 president

CHIP TECH
Tests show high-temperature superconducting magnets are ready for fusion

Power when the sun doesn't shine

UK 'net zero' economy bucks recession: study

Rwanda signs lithium deal with Rio Tinto

CHIP TECH
Wind-powered Dutch ship sets sail for greener future

Leaf-shaped generators create electricity from the wind and rain

European offshore wind enjoys record year in 2023

Danish firm to build huge wind farm off UK

CHIP TECH
Crown Ethers Enhance Perovskite Solar Cells, Preventing Lead Leakage

Guiding future research on 'extraordinary potential' of next-generation solar cells

Study unlocks nanoscale secrets for designing next-generation solar cells

Paderborn University's Hawk-Powered Breakthrough Aims to Boost Solar Cell Efficiency

CHIP TECH
IAEA chief to hold talks with Putin about Ukraine nuclear plant

Framatome partners with TerraPower for Natrium reactor fuel handling equipment design

Ukraine to build 4 nuclear reactors as war hits power supply

GE Hitachi receives UK government grant for nuclear energy development

CHIP TECH
Greenhouse gas repurposed in University of Auckland experiments

Inexpensive, carbon-neutral biofuels are finally possible

Watching the enzymes that convert plant fiber into simple sugars

Microbial division of labor produces higher biofuel yields

CHIP TECH
Vessel targeted off Yemen: security firm

Oil spills pile on pressure for Iraq's farmers

British navy ship repels Huthi rebel attack: minister

Climate crisis prompts Biden to halt new gas export facilities

CHIP TECH
Oranges wither, cows go hungry in drought-hit Sicily

Activists may escape prosecution over Mona Lisa soup attack

China may miss all key climate targets for 2025: report

Winter drought grips southern Europe, northern Africa

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.