Energy News  
AEROSPACE
AFRL camber morphing wing takes flight
by Staff Writers
Wright-Patterson AFB OH (SPX) Dec 19, 2019

The Air Force Research Laboratory-developed Variable Camber Compliant Wing successfully completed a series of flight experiments in September and October of 2019. This unique wing concept changes shape to improve aerodynamic performance and adapt itself to various flight conditions and missions. (U.S. Air Force Photo)

The Air Force Research Laboratory recently completed the successful flight demonstration of a game-changing camber morphing wing technology that could significantly increase aircraft range and performance.

The AFRL-developed Variable Camber Compliant Wing is capable of changing shape to improve aerodynamic performance and morph itself to various flight conditions and missions. Wing camber, or the shape of a wing surface, is a fundamental element of aerodynamic flight. Conventional wings with discrete hinged control surfaces have greater drag, whereas wings with a smooth camber are efficient and maneuverable. The ability to morph the wing according to aerodynamic conditions would give an aircraft increased lift when needed without a weight penalty-typically at takeoff and landing-and greater fuel-efficiency and maneuverability when in flight.

This flight experiment demonstrated the second iteration of the VCCW, a smaller, more compact version than the first, which was used primarily in wind tunnel experiments. This eight-foot wing was designed to be flown on a commercial-off-the-shelf remotely controlled aircraft, simulating an unmanned air vehicle. During the series of flights, held in September and October 2019, the wing was flown at low speeds, completing a number of maneuvers and demonstrating active shape control for optimized drag reduction and increased agility.

The VCCW features a smooth and continuous skin construction, which not only reduces noise by eliminating sharp surfaces and gaps, but improves aerodynamic performance as well. According to Dr. James Joo, AFRL Advanced Structural Concepts team lead and VCCW program manager, the improved aerodynamics translates into potentially significant fuel savings.

"Early estimates show VCCW technology saving aircraft fuel consumption by 10 percent," said Joo. "This was one of our main goals, and it fits the Air Force's efforts to reduce overall energy costs."

Jared Neely, AFRL research engineer and designer of the morphing wing, called this demonstration an important step in advancing flexible wing technology for warfighter use.

"The success of this demonstration has given us confidence that this technology can be leveraged to higher-class vehicles, to take advantage of the many benefits this technology can truly offer."

Joo added that although other research organizations have explored the morphing camber concept, AFRL's version is unique because it is a true flexible wing without any discrete control surfaces to assist in takeoff and landing. This seamless surface can increase overall range, making it ideal for a variety of long-range platforms. He says the team will continue to refine the concept and look into additional ways it can benefit existing aircraft.

"We are excited about the success of this demonstration," said Joo. "We are continuing to explore the opportunities that this technology can offer for future Air Force aircraft development."


Related Links
Air Force Research Laboratory
Aerospace News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


AEROSPACE
NASA's X-59 quiet supersonic research aircraft cleared for final assembly
Washington DC (SPX) Dec 17, 2019
NASA's first large scale, piloted X-plane in more than three decades is cleared for final assembly and integration of its systems following a major project review by senior managers held Thursday at NASA Headquarters in Washington. The management review, known as Key Decision Point-D (KDP-D), was the last programmatic hurdle for the X-59 Quiet SuperSonic Technology (QueSST) aircraft to clear before officials meet again in late 2020 to approve the airplane's first flight in 2021. "With the co ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
Germany signs off on flagship climate plan

Germany issue 1st green bonds; Dutch court orders govt to slash emissions

Maritime sector floats fuel levy to help cut carbon

Eastern EU states opposed to 2050 zero-emissions goal

AEROSPACE
First Long Duration, Liquid Air Energy Storage System in the United States

NYSERDA announces battery storage project for town of Ulster, replacing previously planned fossil fuel plant

Proton-hydrogen collision model could impact fusion research

Detours may make batteries better

AEROSPACE
Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

Saving bats from wind turbine death

DTEK reaches 1 GW of renewable energy generation capacity in Ukraine

AEROSPACE
Hecate Energy's 100MW Santa Teresa solar project wins El Paso bid

Nivea parent Beiersdorf switches to green power

Impossible breakthrough method of creating solar material at NREL

Fine-tuning thermoelectric materials for cheaper renewable energy

AEROSPACE
Uranium chemistry and geological disposal of radioactive waste

In first, Switzerland shuts down ageing nuclear power station

Green-finance deal survives EU split on nuclear

Russian nuclear-powered giant icebreaker completes test run

AEROSPACE
NREL, Co-Optima research yields potential bioblendstock for diesel fuel

Neutrons optimize high efficiency catalyst for greener approach to biofuel synthesis

Big step in producing carbon-neutral fuel Silver diphosphide

Pathways toward post-petrochemistry

AEROSPACE
Oil-catching sponge could soak up residue from offshore drilling

Effects of natural gas assessed in study of shale gas boom in Appalachian basin

'Green' Christmas pageant provokes Canada oil worker outrage

EIB chief slams slow industrial response to climate change

AEROSPACE
Five reasons COP25 climate talks failed

Dinosaurs faced global warming, elevated mercury levels, fossil shells show

UN chief calls climate summit a 'lost opportunity'

Aid agencies throw lifeline to hungry Zimbabweans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.