3-D-printed minifactories by Staff Writers Zurich, Switzerland (SPX) Dec 07, 2017
There will soon be nothing that cannot be produced with 3D printing. However, the materials used for this process are still "dead matter" such as plastics or metals. A group of ETH researchers led by Professor Andre Studart, Head of the Laboratory for Complex Materials, has now introduced a new 3D printing platform that works using living matter. The research-ers developed a bacteria-containing ink that makes it possible to print mini biochemical factories with certain properties, depending on which species of bacteria the scientists put in the ink. Studart's group members and first authors Patrick Ruhs and Manuel Schaffner used the bacteria Pseudomonas putida and Acetobacter xylinum in their work. The former can break down the toxic chemical phenol, which is produced on a grand scale in the chemical industry, while the latter secretes high-purity nanocellulose. This bacterial cellulose relieves pain, retains moisture and is stable, opening up potential applications in the treatment of burns. The ETH researchers' new printing platform offers numerous potential combinations. In a single pass, the scientists can use up to four different inks containing different species of bacteria at different concentrations in order to produce objects exhibiting several properties. The ink is composed of a biocompatible hydrogel that provides structure. The hydrogel itself is com-posed of hyaluronic acid, long-chain sugar molecules, and pyrogenic silica. The culture medium for the bacteria is mixed into the ink so that the bacteria have all the prerequisites for life. Using this hy-drogel as a basis, the researchers can add bacteria with the desired "range of properties" and then print any three-dimensional structure they like.
As viscous as toothpaste At the same time, the printed objects must be sturdy enough to support the weight of subsequent layers. If they are too fluid, it is not possible to print stable structures, as these collapse under the weight exerted on them. "The ink must be as viscous as toothpaste and have the consistency of Nivea hand cream," is how Schaffner describes the successful formula. The scientists have named their new printing material "Flink", which stands for "functional living ink", and recently presented the technique in the journal Science Advances.
Enormous potential However, the research is still in its initial stages. "Printing using bacteria-containing hydrogels has enormous potential, as there is such a wide range of useful bacteria out there," says Ruhs. He blames the bad reputation attached to microorganisms for the almost total lack of existing research into addi-tive methods using bacteria. "Most people only associate bacteria with diseases, but we actually couldn't survive without bacteria," he says. However, the researchers believe their new ink is complete-ly safe. The bacteria they use are all harmless and beneficial.
Sensors for toxic substances and filters for oil spills One practical application might be a bacteria-containing 3D-printed sensor that could detect toxins in drinking water. Another idea would be to create bacteria-containing filters for use in disas-trous oil spills. First, it will be necessary to overcome the challenges of the slow printing time and difficult scalability. Acetobacter currently takes several days to produce cellulose for biomedical ap-plications. However, the scientists are convinced that they can further optimise and accelerate the processes. The development of special materials for 3D printing is a speciality of ETH professor Andre Studart's research group. For example, he and his interdisciplinary team have also developed a printable high-porosity ink made of ceramic, which allows the printing of very lightweight bone-like structures used for energy production.
Washington DC (SPX) Dec 07, 2017 Researchers using CT scans and 3-D printing have created accurate, custom-designed prosthetic replacements for damaged parts of the middle ear, according to a study being presented today at the annual meeting of the Radiological Society of North America (RSNA). The technique has the potential to improve a surgical procedure that often fails because of incorrectly sized prosthetic implants, resea ... read more Related Links ETH Zurich Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |