Energy News  
TIME AND SPACE
10 million ions cooled for the first time to 7K
by Staff Writers
Berlin, Germany (SPX) Nov 30, 2016


Diatomic nickel ions (gray) are captured at cryogenic temperatures in an RF ion trap; cold helium gas (blue) serves to dissipate the heat. The magnetic field orients the ions. Image courtesy T. Lau/HZB. For a larger version of this image please go here.

Previously it was only possible to cool down about one thousand ions to 7.5 K using buffer gas. However, a thousand ions are not nearly enough for spectroscopic analyses. The ion trap with this new method provides a new opportunity to use cryogenic X-ray spectroscopy to study the magnetism and ground states of molecular ions. This is the foundation needed to develop new materials for energy-efficient information technologies. The work has been published in the Journal of Chemical Physics.

"Until now, everyone assumed it would not be possible to reach lower temperatures at such a high density of ions with a quadrupole ion trap. But it can be done", says HZB researcher Tobias Lau. This is because the RF electromagnetic field doesn't just trap the stored ions, but "jiggles" them as well so they are constantly gaining energy and rising in temperature.

In order to draw off this additional energy, the team introduced helium as a buffer gas, and at relatively high pressure. "You have to imagine this as kind of a cold syrup that damps the macro motion of the particles, slowing their rotation and translation", explains Vicente Zamudio-Bayer from the University of Freiburg.

The experiments were carried out using the UE52-PGM station at BESSY II where polarisation of the soft X-ray radiation can be varied. The experimental set-up at this beamline is unique in facilitating X-ray spectroscopy of cryogenic ions under externally applied magnetic fields.

The sample can be analysed in an externally applied magnetic field using circularly polarised X-rays (X-ray magnetic circular dichroism/XMCD). This yields information about the magnetic moments of the electrons subdivided into both spin and orbital contributions.

"We were able for the first time to experimentally determine the magnetic moments of nickel dimercations thanks to the especially low temperatures", Lau continued. The work on the ion trap is part of a larger project of HZB and the Univ. of Freiburg being funded by the German Federal Ministry of Education and Research (Grant No. BMBF-05K13Vf2).

"We are now working on reaching even lower temperatures. We hope we will soon get to 5 K", offers Zamudio-Bayer. The lower the temperature, the more clearly the magnetic effects show up.

Benefit for users
But all users of the ion trap at the BESSY II UE52-PGM station can benefit already from the record achieved. "Not only magnetism, but also many other properties of a wide range of different molecules can be studied spectroscopically here, such as transition-metal ion complexes. That will therefore be attractive to many users, especially those in physical chemistry", Lau thinks.

Electronic ground state of Ni2+, V. Zamudio-Bayer, R. Lindblad, C. Bulow, G. Leistner, A. Terasaki, B. v. Issendorff, and J. T. Lau, J. Chem. Phys. 145, 194302 (2016). DOI: 10.1063/1.4967821


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
An Archimedes' screw for groups of quantum particles
Singapore (SPX) Nov 21, 2016
Anyone who has tried to lead a group of tourists through a busy city knows the problem. How do you keep the group together when they are constantly jostled, held up and distracted by the hubbub around them? It's a problem the designers of quantum computers have to tackle. In some future quantum computers, information will be encoded in the delicate quantum states of groups of particles. Th ... read more


TIME AND SPACE
China power plant collapse kills at least 22: Xinhua

Climate: Four nations map course to carbon-free economies

Study: LED lights draw fewer insects

Shifting focus leaves mixed bag for German utility RWE

TIME AND SPACE
Physicists spell 'AV' by manipulating Abrikosov vortices

Hydrogen in your pocket? New plastic for carrying and storing hydrogen

Glow-in-the-dark dye could fuel liquid-based batteries

Researchers report new thermoelectric material with high power factors

TIME AND SPACE
Owl-inspired wing design reduces wind turbine noise by 10 decibels

DONG Energy sets wind energy sights on Taiwan

Interior set to rule on future of BLM's Renewable Energy Program

Microsoft Corp. taps deeper into wind power

TIME AND SPACE
Tesla microgrid powers entire island with solar in American Samoa

Africa looks to solar for communities off the grid

Sweden to scrap taxes on solar energy in 2017

Tesla shareholders approve merger with SolarCity

TIME AND SPACE
Swiss reject speedy nuclear phaseout

'Diamond-age' of power generation as nuclear batteries developed

Nuclear energy: who's advancing and who's retreating

Breakthrough offers greater understanding of safe radioactive waste disposal

TIME AND SPACE
Investing in the 'bioeconomy' could create jobs and reduce carbon emissions

Argonne researchers study how reflectivity of biofuel crops impacts climate

UNIST researchers turn waste gas into road-ready diesel fuel

NextCoal to produce bio-coal for export to Japan, bio-oil for domestic use

TIME AND SPACE
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

TIME AND SPACE
Overheated Arctic sign of climate change 'vicious circle'

Deciphering Trump's mixed signals on climate change

The decline in emissions also has negative implications

Current climate date rescue activities in Australia









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.