Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















ENERGY TECH
UMD physicist improves method for designing fusion experiments
by Staff Writers
College Park MD (SPX) Feb 14, 2017


Fusion experiments known as stellarators work by confining a mass of superheated plasma (orange horizontal mass) inside a magnetic field generated by external electromagnetic coils (multicolored vertical bands). A UMD physicist has made a revision to the software tools used to design these complex coil shapes, allowing researchers to create better designs with more room between the coils for repairs and instrumentation. The solid lines denote shapes made by the old software, while the dotted lines denote shapes made by the new software. Image courtesy Matt Landreman.

"Measure twice, cut once" is an old carpenter's proverb - a reminder that careful planning can save time and materials in the long run.

The concept also applies to the design of stellarators, which are complex nuclear fusion experiments meant to explore fusion's potential as an energy source. Stellarators work by confining a ring of blazing-hot plasma inside a precisely shaped magnetic field generated by external electromagnetic coils. When the plasma gets to several million degrees - as hot as the interior of the sun - atomic nuclei begin to fuse together, releasing massive amounts of energy.

Before turning a single bolt to build one of these rare and expensive devices, engineers create exacting plans using a series of algorithms. However, a wide variety of coil shapes can all generate the same magnetic field, adding levels of complexity to the design process. Until now, few researchers have studied how to choose the best among all potential coil shapes for a specific stellarator.

University of Maryland physicist Matt Landreman has made an important revision to one of the most common software tools used to design stellarators. The new method is better at balancing tradeoffs between the ideal magnetic field shape and potential coil shapes, resulting in designs with more space between the coils. This extra space allows better access for repairs and more places to install sensors. Landreman's new method is described in a paper published February 13, 2017 in the journal Nuclear Fusion.

"Instead of optimizing only the magnetic field shape, this new method considers the complexity of the coil shapes simultaneously. So there is a bit of a tradeoff," said Landreman, an assistant research scientist at the UMD Institute for Research in Electronics and Applied Physics (IREAP) and sole author of the research paper. "It's a bit like buying a car. You might want the cheapest car, but you also want the safest car. Both features can be at odds with each other, so you have to find a way to meet in the middle."

Researchers used the previous method, called the Neumann Solver for Fields Produced by External Coils (NESCOIL) and first described in 1987, to design many of the stellarators in operation today - including the Wendelstein 7-X (W7-X). The largest stellarator in existence, W7-X began operation in 2015 at the Max Planck Institute of Plasma Physics in Germany.

"Most designs, including W7-X, started with a specifically shaped magnetic field to confine the plasma well. Then the designers shaped the coils to create this magnetic field," Landreman explained. "But this method typically required a lot of trial-and-error with the coil design tools to avoid coils coming too close together, making them infeasible to build, or leaving too little space to access the plasma chamber for maintenance."

Landreman's new method, which he calls Regularized NESCOIL - or REGCOIL for short - gets around this by tackling the coil spacing issue of stellarator design in tandem with the shaping of the magnetic field itself. The result, Landreman said, is a fast, more robust process that yields better coil shapes on the first try.

Modeling tests performed by Landreman suggest that the designs produced by REGCOIL confine hot plasma in a desirable shape, while significantly increasing the minimum distances between coils.

"In mathematics, we'd call stellarator coil design an 'ill-posed problem,' meaning there are a lot of potential solutions. Finding the best solution is highly dependent on posing the problem in the right way," Landreman said. "REGCOIL does exactly that by simplifying coil shapes in a way that the problem can be solved very efficiently."

The development of nuclear fusion as a viable energy source remains far off into the future. But innovations such as Landreman's new method will help bring down the cost and time investments needed to build new stellarators for research and - eventually - practical, energy-generating applications.

"This field is still in the basic research stage, and every new design is totally unique," Landreman said. "With these incompatible features to balance, there will always be different points where you can decide to strike a compromise. The REGCOIL method allows engineers to examine and model many different points along this spectrum."

The research paper, "An improved current potential method for fast computation of stellarator coil shapes," Matt Landreman, was published February 13, 2017 in the journal Nuclear Fusion.


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Maryland
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Physicist uncovers clues to mechanism behind magnetic reconnection
Princeton NJ (SPX) Jan 24, 2017
Physicist Fatima Ebrahimi at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has published a paper showing that magnetic reconnection - the process in which magnetic field lines snap together and release energy - can be triggered by motion in nearby magnetic fields. By running computer simulations, Ebrahimi gathered evidence indicating that the wiggling of atomic ... read more


ENERGY TECH
Taiwan lantern makers go green for festival of lights

EU parliament backs draft carbon trading reforms

Republican ex-top diplomats propose a carbon tax

Electricity costs: A new way they'll surge in a warming world

ENERGY TECH
Researchers optimize the assembly of micro meso and macroporous carbon for Li-S batteries

Looking for the next leap in rechargeable batteries

UMD physicist improves method for designing fusion experiments

Next-Gen batteries could provide power to microsatellites, cubesats

ENERGY TECH
Michigan meets renewable energy targets

British grid drawing power from new offshore wind farm

Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

Russia's nuclear giant pushes into wind energy

ENERGY TECH
Printable solar cells just got a little closer

Governors tell Trump that China will reap low-carbon rewards

First Solar Awarded 140Mw Module Supply Contract For Australia'S Largest Solar Project

Accelerated chlorophyll reaction in microdroplets to reveal secret of photosynthesis

ENERGY TECH
'No risk' in Benin after truck with chemical for nuclear production crashes

Slovenian nuclear plant shuts down after water problem

Slovenian nuclear plant restarts after shutdown

Explosion at French nuclear plant, 'no radiation risk'

ENERGY TECH
Alberta backing bioenergy programs

A better way to farm algae

DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

Cathay Pacific to cut emissions with switch to biofuel

ENERGY TECH
Resource-rich Ghana facing mixed economic prospects

Norway sees job prospects improving in oil and gas

Austrian energy group OMV says retooling paid off

Libya asks NATO for security help

ENERGY TECH
Climate study delivers dire warning on Alpine snow

Gas hydrate breakdown unlikely to cause massive greenhouse gas release

Scientists argue current climate change models understate the problem

Researchers say climate models understate risk, ignore human factors




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement