Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Switzerland winds up superconductivity
by Staff Writers
Geneva, Switzerland (SPX) Jun 10, 2016


Details of the innovative superconducting coil, conceived and manufactured by researchers from UNIGE and Bruker BioSpin. Image courtesy L. Windels - UNIGE. For a larger version of this image please go here.

The unusual electronic properties of some superconducting materials permit lossless and dense electrical currents at very low temperatures, even in high magnetic fields. Conductors made of these materials are thus ideal for winding coils to generate very high magnetic fields, which are essential for a number of applications like magnetic medical imaging, magnetic resonance spectroscopy for the analysis of complex molecules or even accelerator magnets.

To generate ever-higher magnetic fields, physicists at the University of Geneva (UNIGE) and an R and D team of Bruker BioSpin in Fallanden (ZH), both in Switzerland, started a collaboration in 2012, which was partially funded by the Swiss National Science Foundation (SNSF). Together, they successfully developed and tested the first superconducting coil able to reach a magnetic field of 25 Tesla. A first in Europe.

Today, the magnets used in nuclear magnetic resonance (NMR) and medical magnetic resonance imaging (MRI) represent the primary commercial applications of superconductivity. NMR, used mainly in the chemical and pharmaceutical industry, allows discovering new molecules, studying the structure of proteins or analyzing food content.

It is essential for drug development or the quality control of chemical compounds. Modern measurement instruments available on the market today and manufactured particularly by Bruker BioSpin, world leader in this field, are able to produce magnetic fields of up to 23.5 Tesla. This limit is related to the physical properties of conventional superconducting materials used to generate the magnetic field.

"However, there is a need for more powerful spectrometers in the biomedical field", says Carmine Senatore, professor in the Department of Quantum Matter Physics in the Faculty of Science at UNIGE. "Indeed, the stronger the magnetic field, the better the resolution of molecular structures.

The goal of our collaboration was therefore to reach the new record for the magnetic field intensity of 25 Tesla with newly available superconducting materials, which was a real scientific and technological challenge. It is also an important milestone in the introduction of crucial technologies for the development of commercial ultra-high-field NMR products."

To create the magnetic field of 25 Tesla, the researchers combined a Bruker laboratory magnet producing 21 Tesla, already installed at UNIGE, with an innovative superconducting insert coil increasing the field by an additional 4 Tesla; so in total, a field well beyond the 23.5 Tesla reachable with conventional superconducting coils could be generated. In order to operate, the coil must be cooled with liquid helium to a temperature of ?269 C (4.2 K).

The superconductor chosen to achieve such a field is a copper-oxide-based ceramic, YBCO. A one-micrometer thick layer of superconductor covers a thin steel tape which is then wound onto a cylindrical support to obtain the coil. 140 meters of 3 mm wide tape were necessary to produce the superconducting insert coil. In the preliminary design phase, many types of commercially available superconducting tapes were systematically studied and tested in order to understand and control their electrical, magnetic, mechanical and thermal properties.

The challenge consisted of finding a conductor with the right balance of properties: it must carry high currents without dissipation, endure the winding process without degradation and withstand the magnetically generated mechanical stresses. This has been accomplished.

"In addition to the achievable higher resolution, which will certainly stimulate the scientific community and the network of institutions working at the forefront of molecular science, the use of YBCO will also simplify the operation of NMR spectrometers by using less complicated cooling systems", explains Riccardo Tediosi, manager of Bruker BioSpin's Superconducting Technologies group.

This first 25 Tesla coil will be a central and integral part of the laboratory of applied superconductivity at UNIGE. Although the coil is not a commercial product, the know-how developed for its design and manufacture represents an invaluable contribution to commercial NMR systems based on this technology.

This project demonstrates how the Swiss network of research institutes and corporations active in this field in Switzerland are able to master such technologies. In the near future, this record magnet will be used for basic and fundamental research while scientists and engineers will aim at even more challenging goals: all-superconducting coils generating stable and homogeneous magnetic fields beyond 30 Tesla.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Universite de Geneve
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Energy-saving devices work - if you use them correctly
East Lansing MI (SPX) Jun 10, 2016
A well-insulated home with a high-efficiency air conditioner and programmable thermostat are only as effective as the person using it. A new study led by Michigan State University and published in the current issue of Procedia Engineering shows that people living in green dwellings who don't maximize their technology can lose half of the energy savings available to them. "Technological adv ... read more


ENERGY TECH
Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

Changing the world, 1 fridge at a time

Could off-grid electricity systems accelerate energy access

ENERGY TECH
Switzerland winds up superconductivity

Energy-saving devices work - if you use them correctly

Boeing's unmanned undersea vehicle uses Corvus lithium ion battery

Towards building next-generation batteries using a pigment electrode

ENERGY TECH
Germany slows pace of green energy transition

Ireland aims for greener future

North Sea countries mull wind energy strategy

Industry survey finds U.S. wind power growing

ENERGY TECH
Novel capping strategy improves stability of perovskite nanocrystals

Sun-powered Solar Impulse 2 aircraft in New York after Statue of Liberty fly-by

Clean Energy Collective Expands Massachusetts Community Solar Portfolio

Perovskite solar cells surpass 20 percent efficiency

ENERGY TECH
Quid Pro Quo: Will US Broker a Nuclear Deal Between India and China?

Belgium's Tihange reactor shuts down

A new material can clear up nuclear waste gases

In turnaround, Sweden agrees to continue nuclear power

ENERGY TECH
World Biofuel Additives Market is Expected to Reach $12,560 Million by 2022

New understanding of plant growth brings promise of tailored products for industry

Chemistry lessons from bacteria may improve biofuel production

Liquid by-products from forest industry find use in wood-plastic composites

ENERGY TECH
Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

Chine's satellite industry eyes global satellite market

ENERGY TECH
Effects of warmer weather on productivity being felt worldwide, scientists say

ADB helps fund India's climate fight

Technique could help climate models sweat the small stuff

Slowing of landslide flows reflects California's drying climate




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement