Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Study helps explain behavior of latest high-temp superconductors

File image.
by Staff Writers
Houston TX (SPX) May 04, 2011
A Rice University-led team of physicists this week offered up one of the first theoretical explanations of how two dissimilar types of high-temperature superconductors behave in similar ways.

The research appears online this week in the journal Physical Review Letters. It describes how the magnetic properties of electrons in two dissimilar families of iron-based materials called "pnictides" (pronounced: NICK-tides) could give rise to superconductivity. One of the parent families of pnictides is a metal and was discovered in 2008; the other is an insulator and was discovered in late 2010.

Experiments have shown that each material, if prepared in a particular way, can become a superconductor at roughly the same temperature. This has left theoretical physicists scrambling to determine what might account for the similar behavior between such different compounds.

Rice physicist Qimiao Si, the lead researcher on the new paper, said the explanation is tied to subtle differences in the way iron atoms are arranged in each material. The pnictides are laminates that contain layers of iron separated by layers of other compounds.

In the newest family of insulating materials, Chinese scientists found a way to selectively remove iron atoms and leave an orderly pattern of "vacancies" in the iron layers.

Si, who learned about the discovery of the new insulating compounds during a visit to China in late December, suspected that the explanation for the similar behavior between the new and old compounds could lie in the collective way that electrons behave in each as they are cooled to the point of superconductivity.

His prior work had shown that the arrangement of the iron atoms in the older materials could give rise to collective behavior of the magnetic moments, or "spins," of electrons.

These collective behaviors, or "quasi-localizations," have been linked to high-temperature superconductivity in both pnictides and other high-temperature superconductors.

"The reason we got there first is we were in a position to really quickly incorporate the effect of vacancies in our model," Si said. "Intuitively, on my flight back (from China last Christmas), I was thinking through the calculations we should begin doing."

Si conducted the calculations and analyses with co-authors Rong Yu, postdoctoral research associate at Rice, and Jian-Xin Zhu, staff scientist at Los Alamos National Laboratory.

"We found that ordered vacancies enhance the tendency of the electrons to lock themselves some distance away from their neighbors in a pattern that physicists call 'Mott localization,' which gives rise to an insulating state," Yu said. "This is an entirely new route toward Mott localization."

By showing that merely creating ordered vacancies can prevent the material from being electrical conductors like their relatives, the researchers concluded that even the metallic parents of the iron pnictides are close to Mott localization.

"What we are learning by comparing the new materials with the older ones is that these quasi-localized spins and the interactions among them are crucial for superconductivity, and that's a lesson that can be potentially applied to tell experimentalists what is good for raising the transition temperature in new families of compounds," Zhu said.

Superconductivity occurs when electrons pair up and flow freely through a material without any loss of energy due to resistance. This most often occurs at extremely low temperatures, but compounds like the pnictides and others become superconductors at higher temperatures - close to or above the temperature of liquid nitrogen - which creates the possibility that they could be used on an industrial scale.

One impediment to their broader use has been the struggle to precisely explain what causes them to become superconductors in the first place. The race to find that has been called the biggest mystery in modern physics.

"The new superconductors are arguably the most important iron-based materials that have been discovered since the initial discovery of iron pnictide high-temperature superconductors in 2008," Si said. "Our theoretical results provide a natural link between the new and old iron-based superconductors, thereby suggesting a universal origin of the superconductivity in these materials."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ENERGY TECH
Chemist designs new polymer structures for use as 'plastic electronics'
Ames IO (SPX) May 02, 2011
Iowa State University's Malika Jeffries-EL says she's studying doing structure-property studies so she can teach old polymers new tricks. Those tricks improve the properties of certain organic polymers that mimic the properties of traditional inorganic semiconductors and could make the polymers very useful in organic solar cells, light-emitting diodes and thin-film transistors. Conductive ... read more







ENERGY TECH
China facing electricity shortages

Australians turning off carbon tax: poll

California Signs New Renewable Portfolio Standard into Law

China Energy Consumption Will Stabilize

ENERGY TECH
China to increase maritime surveillance

BP fined $25 million over Alaska oil spill

FuelCell Energy To Develop Clean-Coal Fuel Cell Power Plant

Study helps explain behavior of latest high-temp superconductors

ENERGY TECH
Global warming won't harm wind energy production, climate models predict

Study: Warming won't lessen wind energy

Mortenson Construction to Build its 100th Wind Project

Germany opens offshore wind farm

ENERGY TECH
Constellation Energy To Acquire 30 MW Solar Installation in Sacramento

Solar power, with a side of hot running water

Rice University parlays sun's saving grace into autoclave

SunBorne and Suntech Partner for 100MW of Solar Projects in India

ENERGY TECH
Slovakia puts off new Jaslovske nuclear unit till 2025

France denies reactor programme halted

Police arrest five men near British nuclear plant

EU nuclear plant stress tests to start in June: Hungary

ENERGY TECH
Formidable fungal force counters biofuel plant pathogens

Interjet and Airbus Conduct First Biofuel Flight in the Country

BioJet and Abundant Biofuels Agree to Merge

Food vs fuel: the debate is over

ENERGY TECH
China sees smooth preparation for launch of unmanned module

China to attempt first space rendezvous

Countdown begins for Chineses space station program

Asia's star ever brighter in space

ENERGY TECH
The case for climate change

Water currents of South Africa could stabilize climate in Europe

No binding climate deal at Durban, warn US, EU

Texas drought could extend for months


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement