Energy News  
ENERGY TECH
Study Probes Link Between Magnetism And Superconductivity

Classical superconductors, which were discovered almost a century ago, were the first materials known to conduct electrons without losing energy due to resistance. Electrons typically bump and ricochet from atom to atom as they travel down a wire, and this jostling leads to a loss of energy in the form of electrical resistance. Resistance costs the energy industry billions of dollars per year in lost power, so scientists have been keen to put superconducting wires to widespread use, but it hasn't been easy.
by Staff Writers
Houston TX (SPX) Dec 15, 2010
European and U.S. physicists this week are offering up the strongest evidence yet that magnetism is the driving force behind unconventional superconductivity. The findings by researchers from Rice University, the Max Planck Institute for Chemical Physics of Solids (MPI-CPfS) in Dresden, Germany, and other institutions were published online in Nature Physics.

The findings follow more than three decades of research by the team that discovered unconventional superconductivity in 1979. That breakthrough, which was led by MPI-CPfS Director Frank Steglich, preceded by seven years the more widely publicized discovery of unconventional superconductivity at high temperatures.

In the latest study, the team revisited the same heavy-fermion material - a mix of cerium, copper and silicon - that was used in 1979, applying new experimental techniques and theoretical knowledge unavailable 30 years ago.

"In 1979, there was not much understanding of quantum criticality or of the collective way that electrons behave at the border of magnetism," said Rice physicist Qimiao Si, the lead theorist and co-author of the new paper. "Today, we know a great deal about such collective behavior in the regime where materials transition to a superconducting state. The question we examined in this study is, How does all of that new knowledge translate into an understanding of the superconducting state itself?"

Magnetism - the phenomenon that drives compass needles and keeps notes stuck to refrigerators the world over - arises when the electrons in a material are oriented in a particular way. Every electron is imbued with a property called spin, and electron spins are oriented either up or down.

In most materials, the arrangement of electron spins is haphazard, but in everyday refrigerator magnets - which scientists call ferromagnets - electron spins are oriented collectively, in the same direction.

Classical superconductors, which were discovered almost a century ago, were the first materials known to conduct electrons without losing energy due to resistance.

Electrons typically bump and ricochet from atom to atom as they travel down a wire, and this jostling leads to a loss of energy in the form of electrical resistance. Resistance costs the energy industry billions of dollars per year in lost power, so scientists have been keen to put superconducting wires to widespread use, but it hasn't been easy.

It took physicists almost 50 years to explain classical superconductivity: At extremely low temperatures, electrons pair up and move in unison, thus avoiding the jostling they experience by themselves.

These electron twosomes are called Cooper pairs, and physicists began trying to explain how they form in unconventional superconductors as soon as Steglich's findings were published in 1979. Si said theorists studying the question have increasingly been drawn to the collective behavior of electrons, particularly at the border of magnetism - the critical point where a material changes from one magnetic state to another.

In the new experiments, Steglich, the lead experimentalist co-author, and his group collaborated with physicists at the Julich Centre for Neutron Science at the Institut Laue-Langevin in Grenoble, France, to bombard heavy fermion samples with neutrons. Because neutrons also have spin, those experiments allowed the team to probe the spin states of the electrons in the heavy fermions.

"Our neutron-scattering data provide convincing evidence that the cerium-based heavy fermion compound is located near a quantum critical point," said Oliver Stockert, a study co-author and a neutron-scattering specialist from MPI-CPfS. "Moreover, the data revealed how the magnetic spectrum changes as the material turns into a superconductor."

From the data, Si and co-author Stefan Kirchner, a theorist from the Max Planck Institute for the Physics of Complex Systems and a former postdoctoral fellow at Rice, determined the amount of magnetic energy that was saved when the system entered the superconducting state.

"We have calculated that the saved magnetic energy is more than 10 times what is needed for the formation of the Cooper pairs," Kirchner said.

"Why the magnetic exchange in the superconductor yields such a large energy saving is a new and intriguing question," said Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. He said one possible origin is the electronic phenomenon known as the

"Kondo effect," which is involved in a class of unconventional quantum critical points advanced by Si and colleagues in a theoretical paper published in Nature in 2001. Regardless of the final answer, Si said the present study already constitutes a definitive proof that "collective fluctuations of the electrons at the border of magnetism are capable of driving superconductivity."

Si and Steglich found it remarkable that the notion of quantum criticality is providing fresh insights into the workings of the very first unconventional superconductor ever discovered.

At the same time, both said more studies are needed to determine the precise way that quantum-critical fluctuations give rise to heavy-fermion superconductivity. And thanks to key differences between the heavy-fermion materials and high-temperature superconductors, additional work must be done to determine whether the same findings apply to both.

"We are certain that we are on the right track with our investigations, however," Steglich said.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ENERGY TECH
Earthshaking Possibilities May Limit Underground Storage Of CO2
Stanford CA (SPX) Dec 14, 2010
Storing massive amounts of carbon dioxide underground in an effort to combat global warming may not be easy to do because of the potential for triggering small- to moderate-sized earthquakes, according to Stanford geophysicist Mark Zoback. While those earthquakes are unlikely to be big enough to hurt people or property, they could still cause serious problems for the reservoirs containing ... read more







ENERGY TECH
Who Uses The Most Electricity In Germany

How Can Urban Areas Efficiently Save Energy

Protest halts Dutch power station project

EU wants body-wide green power scheme

ENERGY TECH
US sues BP, eight others over Gulf oil spill

Japan eco-fair seeks to reach next generation

BP delays Libyan deep-water drilling

China could face peak coal

ENERGY TECH
Massive offshore wind proposed for R.I.

Repair And Inspection Services For The Expanding Wind Power Industry

Vestas Selects Broadwind Towers For Glacier Hills Wind Project

Optimizing Large Wind Farms

ENERGY TECH
US DoD Selects Skyline Solar To Install High Gain Solar Arrays

Geological Society of America Installs Solar Array

SolarReserve Advances Permitting For Arizona Solar Project

NRG To Acquire 290MW Agua Caliente Solar Project

ENERGY TECH
Russia, Mongolia set terms for uranium mining venture

Areva head opposes new capital increase

Mitsubishi to produce nuclear fuel in US with AREVA

Kuwait boosts stake in French nuclear giant Areva

ENERGY TECH
Doubling Import Tax On Ethanol Will Escalate Brazil-US Trade Conflict

The 50 Hottest Companies In Bioenergy For 2010-11

The Ethics Of Biofuels

Champion Hydrogen-Producing Microbe

ENERGY TECH
China Builds Theme Park In Spaceport

Tiangong Space Station Plans Progessing

China-Made Satellite Keeps Remote Areas In Venezuela Connected

Optis Software To Optimize Chinese Satellite Design

ENERGY TECH
Research Finds Large Uncertainty In Carbon Footprint Calculating

Cancun summit revives U.N. process

US southwest could see 60-year drought: study

In Cancun climate talks, India enjoys place in sun


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement