Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Stanford-led team reveals nanoscale secrets of rechargeable batteries
by Staff Writers
Stanford CA (SPX) Aug 10, 2016


Jongwoo Lim, Yiyang Li, and William Chueh of Stanford and SLAC National Accelerator Laboratory and David Shapiro of Lawrence Berkeley National Laboratory stand in front of the X-ray microscope at the Advanced Light Source. Image courtesy Paul Mueller/Lawrence Berkeley National Laboratory. For a larger version of this image please go here.

Better batteries that charge quickly and last a long time are a brass ring for engineers. But despite decades of research and innovation, a fundamental understanding of exactly how batteries work at the smallest of scales has remained elusive.

In a paper published this week in the journal Science, a team led by William Chueh, an assistant professor of materials science and engineering at Stanford and a faculty scientist at the Department of Energy's SLAC National Accelerator Laboratory, has devised a way to peer as never before into the electrochemical reaction that fuels the most common rechargeable cell in use today: the lithium-ion battery.

By visualizing the fundamental building blocks of batteries - small particles typically measuring less than 1/100th of a human hair in size - the team members have illuminated a process that is far more complex than once thought. Both the method they developed to observe the battery in real time and their improved understanding of the electrochemistry could have far-reaching implications for battery design, management and beyond.

"It gives us fundamental insights into how batteries work," said Jongwoo Lim, a co-lead author of the paper and post-doctoral researcher at the Stanford Institute for Materials and Energy Sciences at SLAC. "Previously, most studies investigated the average behavior of the whole battery. Now, we can see and understand how individual battery particles charge and discharge."

The heart of a battery
At the heart of every lithium-ion battery is a simple chemical reaction in which positively charged lithium ions nestle in the lattice-like structure of a crystal electrode as the battery is discharging, receiving negatively charged electrons in the process. In reversing the reaction by removing electrons, the ions are freed and the battery is charged.

These basic processes - known as lithiation (discharge) and delithiation (charge) - are hampered by an electrochemical Achilles heel. Rarely do the ions insert uniformly across the surface of the particles. Instead, certain areas take on more ions, and others fewer. These inconsistencies eventually lead to mechanical stress as areas of the crystal lattice become overburdened with ions and develop tiny fractures, sapping battery performance and shortening battery life.

"Lithiation and delithiation should be homogenous and uniform," said Yiyang Li, a doctoral candidate in Chueh's lab and co-lead author of the paper. "In reality, however, they're very non-uniform. In our better understanding of the process, this paper lays out a path toward suppressing the phenomenon."

For researchers hoping to improve batteries, like Chueh and his team, counteracting these detrimental forces could lead to batteries that charge faster and more fully, lasting much longer than today's models.

This study visualizes the charge/discharge reaction in real-time - something scientists refer to as operando - at fine detail and scale. The team utilized brilliant X-rays and cutting-edge microscopes at Lawrence Berkeley National Laboratory's Advanced Light Source.

"The phenomenon revealed by this technique, I thought would never be visualized in my lifetime. It's quite game-changing in the battery field," said Martin Bazant, a professor of chemical engineering and of mathematics at MIT who led the theoretical aspect of the study.

Chueh and his team fashioned a transparent battery using the same active materials as ones found in smartphones and electric vehicles. It was designed and fabricated in collaboration with Hummingbird Scientific. It consists of two very thin, transparent silicon nitride "windows." The battery electrode, made of a single layer of lithium iron phosphate nanoparticles, sits on the membrane inside the gap between the two windows. A salty fluid, known as an electrolyte, flows in the gap to deliver the lithium ions to the nanoparticles.

"This was a very, very small battery, holding ten billion times less charge than a smartphone battery," Chueh said. "But it allows us a clear view of what's happening at the nanoscale."

Significant advances
In their study, the researchers discovered that the charging process (delithiation) is significantly less uniform than discharge (lithiation). Intriguingly, the researchers also found that faster charging improves uniformity, which could lead to new and better battery designs and power management strategies.

"The improved uniformity lowers the damaging mechanical stress on the electrodes and improves battery cyclability," Chueh said. "Beyond batteries, this work could have far-reaching impact on many other electrochemical materials." He pointed to catalysts, memory devices, and so-called smart glass, which transitions from translucent to transparent when electrically charged.

In addition to the scientific knowledge gained, the other significant advancement from the study is the X-ray microscopy technique itself, which was developed in collaboration with Berkeley Lab Advanced Light Source scientists Young-sang Yu, David Shapiro, and Tolek Tyliszczak. The microscope, which is housed at the Advanced Light Source, could affect energy research across the board by revealing never-before-seen dynamics at the nanoscale.

"What we've learned here is not just how to make a better battery, but offers us a profound new window on the science of electrochemical reactions at the nanoscale," Bazant said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
SLAC National Accelerator Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
More power to you
Salt Lake City UT (SPX) Jul 29, 2016
Engineers from the University of Utah and the University of Minnesota have discovered that interfacing two particular oxide-based materials makes them highly conductive, a boon for future electronics that could result in much more power-efficient laptops, electric cars and home appliances that also don't need cumbersome power supplies. Their findings were published this month in the scient ... read more


ENERGY TECH
Low sales prices hit Czech power giant CEZ in H1

New MIT system can identify how much power is being used by each device in a household

ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

ENERGY TECH
Making nail polish while powering fuel cells

Stanford-led team reveals nanoscale secrets of rechargeable batteries

Simulating complex catalysts key to making cheap, powerful fuel cells

Lithium-ion batteries: Capacity might be increased by 6 times

ENERGY TECH
Wind power fiercer than expected

OX2 wins EPC contract for 112 MW wind power in Norway

E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

ENERGY TECH
Installation of 2nd MW-scale sun2live solar power plant in Antigua has commenced

Material for polymer solar cells may lend itself to large-area processing

Tiny high-performance solar cells turn power generation sideways

ORNL optimizes formula for cadmium-tellurium solar cells

ENERGY TECH
Nuclear Inspection Benefits from New Generation Sensor Lens

South Korea Relaunches Wolsong NPP's Reactor After Fixing Technical Problem

Japan reactor restarts in post-Fukushima nuclear push

Bulgaria seeks private money for nuclear plant

ENERGY TECH
Biofuel production technique could reduce cost, antibiotics use

National Trust historic home enjoys 21st Century heat

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

ENERGY TECH
China launches first mobile telecom satellite

China prepares for new round of manned space missions

China begins developing hybrid spacecraft

China to expand int'l astronauts exchange

ENERGY TECH
Newly discovered 'blue whirl' fire tornado burns cleaner for reduced emissions

Hidden, local climate impacts of drought-friendly vegetation

U of T researchers reduce climate-warming CO2 to building blocks for fuels

Mountain environments more vulnerable to climate change than previously reported




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement