Subscribe to our free daily newsletters
  Energy News  

Subscribe to our free daily newsletters

Separating charge and discharge in measuring future car batteries
by Staff Writers
Washington DC (SPX) Mar 30, 2016

The initial value of a battery's state of charge is generally calculated by the open-circuit voltage method, which is based on the relationship between the state of charge and the difference of electrical potential between the device's terminals when disconnected from a circuit.

Lithium ion phosphate batteries are widely used to power the batteries in electric cars, but, unlike the amount of gas in a fuel tank, their state of charge can't be measured directly by a physical quantity. Instead, they use an algorithm based on measurements of battery voltage and current, which are in turn influenced by conditions such as weather, electrovoltaic state and traffic conditions. However, the algorithms currently used to measure state of charge each carry drawbacks when used in real-time applications.

To better estimate the state of charge in lithium ion phosphate batteries, researchers at Southwest Jiaotong University in Chengdu, China, have recently developed an algorithm that can separately measure the charging and discharging states of the battery. This allows it to function amidst initial inaccurate values and errors in measuring current, as well as distinguish between the performance of each battery in the series.

According to Zhu Xu, a researcher at Southwest Jiaotong University's School of Electrical Engineering, the differences of dynamic characteristics among batteries in series - such as battery capacity, internal resistance and polarization resistance - can cause the state of charge to become unbalanced, which influences the efficiency and lifespan of the battery packs.

Xu and her colleagues discuss their improved Thenevin circuit model this week in The Journal of Renewable and Sustainable Energy, from AIP Publishing. The previous work has involved lithium battery management chips and management systems.

The initial value of a battery's state of charge is generally calculated by the open-circuit voltage method, which is based on the relationship between the state of charge and the difference of electrical potential between the device's terminals when disconnected from a circuit. According to Xu, however, this relationship can only be experimentally observed, which carries unavoidable experimental error. Additionally, she said, this relationship could potentially be shifted by the charging and discharging conditions.

The traditional algorithms for estimating a battery's state of charge - Ampere-hour integration, the open-circuit voltage method, neural network modeling and Kalman filtering - all carry drawbacks. Ampere-hour integration, while the most commonly used method, relies heavily on the initial state-of-charge value; the open-circuit voltage method can only be used to estimate initial state of charge; neural network modeling places a massive demand on a microprocessor to estimate multiple state-of-charge values using a large amount of experimental data; Kalman filtering, while effective at estimating the current of time-varying states in a dynamic system even amidst initial incorrect values, highly relies on the accuracy of the battery models.

This can become problematic in a traditional Thevenin equivalent circuit model. In these model circuits, the same internal and polarization resistances are adopted when the battery is being charged and discharged. In practice, however, these characteristics end up varying significantly between the two states, which can lead to inaccuracies - making Kalman filtering less than ideal.

To remedy this, the researcher's improved Thevenin equivalent circuit model works by offering different current paths when the battery is being charged or discharged. This allows the researchers to model the characteristics of the battery separately under charging and discharging conditions, with the added ability of the Kalman filter to estimate the battery's state of charge amidst incorrect initial values.

"The proposed improved Thevenin equivalent circuit battery model and state-of-charge estimation algorithm can estimate the battery's state-of-charge more accurately, without many unwanted disturbances," Xu said.

Future work for Xu Zhu and her colleagues includes developing systems to measure a battery system's state of health, which in its current operating conditions is expressed as percentage of ideal performance.

The article, "LiFePO4 battery state of charge estimation based on the improved Thevenin equivalent circuit model and Kalman filtering," is authored by Zhu Xu, Shibin Gao and Shunfeng Yang. It was published in the Journal of Renewable and Sustainable Energy March 29, 2016 (DOI: 10.1063/1.4944335)

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
American Institute of Physics
Powering The World in the 21st Century at

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Iron nitride transformers could boost energy storage options
Albuquerque NM (SPX) Mar 29, 2016
A Sandia-led team has developed a way to make a magnetic material that could lead to lighter and smaller, cheaper and better-performing high-frequency transformers, needed for more flexible energy storage systems and widespread adoption of renewable energy. The work is part of a larger, integrated portfolio of projects funded by Department of Energy's (DOE) Energy Storage Program in the Of ... read more

Human impact forms 'striking new pattern' in Earth's global energy flow

Transforming the US transportation system by 2050 to address climate challenges

Economic growth no longer translates into more greenhouse gas: IEA

Long march in Bangladesh against Sundarbans power plant

Chinese researchers develop new battery technology

New chemistries found for liquid batteries

Iron nitride transformers could boost energy storage options

Creation of Jupiter interior, a step towards room temp superconductivity

Momentum building behind U.S. wind energy

Developing nations became top investors in renewables in 2015: UN

Statoil testing battery storage for wind energy

Small-scale wind energy on the rise

Solar fuels: A refined protective layer for the 'artificial leaf'

New ORNL method could unleash solar power potential

Creditors give Spanish energy giant Abengoa seven months' grace

Australia invests $760 million in technologies to fight climate change

Japan utility to scrap reactor over heavy safety costs

'No terror link' in murder of guard at Belgian nuclear centre

Rosatom Studies Ecological Method of Uranium Mining in Tanzania

France's EDF to decide on UK nuclear plant by May: Macron

ORNL invents tougher plastic with 50 percent renewable content

Dung, offal make clean gas at Costa Rica slaughterhouse

The flexible way to greater energy yield

Smaller, cheaper microbial fuel cells turn urine into electricity

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

Palau declares state of emergency over drought

Plants boost extreme temperatures by 5C

Fires, drought in changing climate affecting high-altitude forests

Release of CO2 fastest in 66 million years: study

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement