Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Energy News .




ENERGY TECH
Roots of the Lithium Battery Problem
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Dec 22, 2013


Nitash Balsara and Katherine Harry at ALS beamline 8.3.2 where they shed important new light on the dendrite problem in lithium batteries. (Photo by Roy Kaltschmidt)

The lithium-ion batteries that power our laptops, smartphones and electric vehicles could have significantly higher energy density if their graphite anodes were to be replaced by lithium metal anodes. Hampering this change, however, has been the so-called dendrite problem.

Over the course of several battery charge/discharge cycles, particularly when the battery is cycled at a fast rate, microscopic fibers of lithium, called "dendrites," sprout from the surface of the lithium electrode and spread like kudzu across the electrolyte until they reach the other electrode.

An electrical current passing through these dendrites can short-circuit the battery, causing it to rapidly overheat and in some instances catch fire. Efforts to solve the problem by curtailing dendrite growth have met with limited success, perhaps because they've just been scratching the surface of the problem.

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered that during the early stages of development, the bulk of dendrite material lies below the surface of the lithium electrode, underneath the electrode/electrolyte interface.

Using X-ray microtomography at Berkeley Lab's Advanced Light Source (ALS), a team led by Nitash Balsara, a faculty scientist with Berkeley Lab's Materials Sciences Division, observed the seeds of dendrites forming in lithium anodes and growing out into a polymer electrolyte during cycling. It was not until the advanced stages of development that the bulk of dendrite material was in the electrolyte. Balsara and his colleagues suspect that non-conductive contaminants in the lithium anode trigger dendrite nucleation.

"Contrary to conventional wisdom, it seems that preventing dendrite formation in polymer electrolytes depends on inhibiting the formation of subsurface dendritic structures in the lithium electrode," Balsara says.

"In showing that dendrites are not simple protrusions emanating from the lithium electrode surface and that subsurface non-conductive contaminants might be the source of dendritic structures, our results provide a clear prescription for the path forward to enabling the widespread use of lithium anodes."

Balsara, who is a professor of chemical engineering at the University of California (UC) Berkeley, is the corresponding author of a paper describing this research in Nature Materials titled "Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes." Co-authors are Katherine Harry, Daniel Hallinan, Dilworth Parkinson and, Alastair MacDowell.

The tremendous capacity of lithium and the metal's remarkable ability to move lithium ions and electrodes in and out of an electrode as it cycles through charge/discharge make it an ideal anode material. Until now, researchers have studied the dendrite problem using various forms of electron microscopy.

This is the first study to employ microtomography using monochromatic beams of high energy or "hard" X-rays, ranging from 22 to 25 keV, at ALS beamline 8.3.2. This technique allows non-destructive three-dimensional imaging of solid objects at a resolution of approximately one micron.

"We observed crystalline contaminants in the lithium anode that appeared at the base of every dendrite as a bright speck," says Katherine Harry, a member of Balsara's research group and the lead author of the Nature Materials paper.

"The lithium foils we used in this study contained a number of elements other than lithium with the most abundant being nitrogen. We can't say definitively that these contaminants are responsible for dendrite nucleation but we plan to address this issue by conducting in situ X-ray microtomography."

Balsara and his group also plan further study of the role played by the electrolyte in dendrite growth, and they have begun to investigate ways to eliminate non-conductive impurities from lithium anodes.

.


Related Links
Berkeley Lab
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Greensmith Energy offers Turn-key energy storage systems up to megawatt scale
Rockville MD (SPX) Dec 10, 2013
Greensmith Energy Management Systems is a leading provider of energy storage technologies and solutions with over 30 systems deployed utilizing its advanced, battery-agnostic technology platform. The company has seen rapid growth by delivering ever-larger, more sophisticated, energy storage technology solutions for utility, power developer and C&I applications. The company now offers "a la ... read more


ENERGY TECH
Brazil's Vale revamps power generation investments

EU probes Germany energy price breaks for business

Ukraine's Two New Energy Deals

Keeping the lights on

ENERGY TECH
Roots of the Lithium Battery Problem

Japan researcher builds device to transmit 'force'

SMUD Visualizes Smart Grid with Space-Time Insight's Situational Intelligence Software

'Universal ripple' could hold the secret to high-temperature superconductivity

ENERGY TECH
Austria's wind industry laments new zoning restrictions

Wind energy: TUV Rheinland certifies PowerWind wind turbines

Renewable Energy Infrastructure Fund acquires 16 MW wind power asset from O2

Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

ENERGY TECH
EU extends probe of 'eco-levy' breaks given to German industry

DuPont Solar Materials Meet Sharp Corporation's Stringent Quality Standards

Microgrid Solar and Doe Run To Provide Solar Upgrades at Herculaneum High

Hanwha SolarOne Brings Light to Chinese Children in Need

ENERGY TECH
Fukushima's last two reactors to be decommissioned

Japan to boost financial support for Fukushima operator

Brussels opens probe into UK state aid for new nuclear plant

TEPCO to decommission surviving Fukushima reactors

ENERGY TECH
Seaweed Energy Solutions (SES) acquires wild seaweed operation in Norway

Algae to crude oil: Million-year natural process takes minutes in the lab

Biorefinery could put South Australian forest industry back on growth track

Ground broken on $6 million Hungarian farm biogas plant

ENERGY TECH
China launches communications satellite for Bolivia

China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

Deep space monitoring station abroad imperative

ENERGY TECH
Assessing the impact of climate change on a global scale

Recognizing the elephant in the room: Future climate impacts across sectors

World experiences hottest November in 134 years: US

Geoengineering approaches to reduce climate change unlikely to succeed




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement