Energy News  





. Researchers Look Into Plant Cells To Increase Ethanol Yields

A magnified image of a cornstalk particle shows the many tiny pores that pretreatment - a phase of the ethanol production process - opens up. These pores create more surface area for subsequent reactions to take place and give enzymes better access to cellulose, the source for cellulosic ethanol. Researchers said this information could help in establishing an economic method for industrial production of cellulosic ethanol. (Purdue University photo/Meijuan Zeng)
by Staff Writers
West Lafayette IN (SPX) Apr 27, 2007
Researchers have discovered that particles from cornstalks undergo previously unknown structural changes when processed to produce ethanol, an insight they said will help establish a viable method for large-scale production of ethanol from plant matter.

Their research demonstrates that pretreating corn plant tissue with hot water - an accepted practice that increases ethanol yields 3 to 4 times - works by exposing minute pores of the plant's cell walls, thus increasing surface area for additional reactions that help break down the cell wall.

"This brings together the tools that link the processing technology to the plant tissue physiology," said Nathan Mosier, an assistant professor of agricultural and biological engineering at Purdue University. "It helps us understand, on a fundamental level, what the processing is doing and how we can improve it."

Mosier said that research, further described in a study published Thursday (April 26) in the journal Biotechnology and Bioengineering, applies to cellulosic ethanol, or ethanol produced from cellulose, which is a key component of plant's cell walls.

Using high-resolution imaging and chemical analyses, the researchers determined that pretreatment opens reactive areas within the cells of the corn stover - another name for postharvest corn remnants, like leaves and stalks - that were previously overlooked.

In the next step of processing, these enlarged pores are more easily attacked by enzymes that convert cellulose into glucose, which is in turn fermented into ethanol by yeast, Mosier said.

Producing ethanol from cellulose would be advantageous over existing industrial processes in several ways, said Michael Ladisch, the study's co-author and a professor of agricultural and biological engineering.

Currently, almost all industrial ethanol derives from either starch found in corn grain or from sugar cane. This limits U.S. ethanol production, which is almost entirely from corn grain, to a grain supply that already is in demand for a variety of uses.

"Cellulosic ethanol would allow industry to expand beyond the limits brought about by corn's other uses, like sweetener production, animal feed and grain exports," Ladisch said.

For these reasons, he said, cellulosic ethanol also would likely put less pressure on food prices.

The new process has the potential to become more efficient, with a larger potential supply of plants that can be grown more economically than traditional row crops. What's more, research in plant science has yielded ? and will likely continue to yield - new types of energy crops with larger pools of usable cellulose.

However, the catch is that cellulose is not easily freed from the cell wall's complex, rigid structure, and, to date, cellulosic ethanol has not been commercially viable. Ladisch said this study should help change that.

"This study will help us translate science from the lab to an industrial setting and will help produce cellulosic ethanol economically," he said.

Plant's cell walls are rigid structures made up of a variety of polymers, including cellulose and hemicellulose, which can be converted into sugars that are then made into ethanol. However, cellulose and hemicellulose are held in place by a variety of compounds like lignin, a strong cellular glue that resists treatment and protects cellulose from being broken down.

Mosier and Ladisch found that after pretreatment opens corn's tiny pores, enzymes not only removed more cellulose and hemicellulose from the cell wall, but also removed it at a faster rate.

Cellulosic ethanol comes from plant biomass, another term for the tissue of recently dead plants, or plants that grow and die annually. This distinguishes the current supply of plant biomass - to be used for cellulosic ethanol - from plant matter that died eons ago and through time created our current supply of carbon fuels, namely coal and oil.

This is why plant biomass is often labeled as renewable, since it can be grown each year, and why petroleum is referred to as non-renewable ? once it's gone, it cannot be replaced.

Mosier and Ladisch are currently at work on a variety of projects related to ethanol production, such as how to best scale up from laboratory operations.

They have conducted research in this area for years. The hot liquid water pretreatment process used in this study was originally developed in the Laboratory of Renewable Resources Engineering at Purdue, which Ladisch directs.

Ladisch's graduate student, Meijuan Zeng, was the paper's first author.

Email This Article

Related Links
Powering The World in the 21st Century at Energy-Daily.com
Our Polluted World and Cleaning It Up
China News From SinoDaily.com
Global Trade News
The Economy
All About Solar Energy at SolarDaily.com
Civil Nuclear Energy Science, Technology and News

Germany Wants To Become World Leader In Energy Efficiency
Berlin (AFP) April 26, 2007
Germany on Thursday unveiled proposals to cut carbon dioxide emissions by 40 percent within 13 years and become the most energy-efficient country in the world.

.
Get Our Free Newsletters Via Email
  



  • Climate Change A Challenge For Oil And Gas Companies
  • Xantrex Announces Partnerships For Solar America Initiative
  • Alcan To Invest 130 Million USD In Saguenay Power Facility
  • Researchers Look Into Plant Cells To Increase Ethanol Yields

  • Russia Nuclear Power Paradox
  • Nuclear Power Not The Solution For China Says Official
  • Floating NPP Will Be Safer
  • Russian Built Reactor Block 1 Powers Up In China

  • AIM Heads For Orbit
  • Satellites Offer Sunny Outlook On Understanding Polar Climate With Help Of Cloudy Skies
  • No Easy Solution To Indonesian Haze Problem
  • NASA Aims To Clear Up Mystery Of Elusive Clouds At Edge Of Space

  • How To Manage Forests In Hurricane Impact Zones
  • Museveni Defends Plans To Transfer Ugandan Forests To Indian Group
  • Greater Use Of Biofuels Threatens Rain Forests
  • Soybean Planting Hastens Drying Of Amazonia

  • Researcher Finds Negative Effects Of Colonization On Slash-And-Burn Farming In Borneo
  • More Nutritious And Less Toxic
  • Gates Grant To Help Poor Countries Contribute To Doomsday Seed Vault
  • Winter Flounder On The Fast Track To Recovery

  • Driverless Car Goes On Show In London
  • Made In USA Losing Cachet
  • Technique Creates Metal Memory And Could Lead To Vanishing Dents
  • Geneva Show Hints At Green Fuel Jumble For Motorists

  • Australia Fears Jet Flight Guilt Could Hit Tourism
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • NASA Seeks New Research Proposals

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement