Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Proton diffusion discovery a boost for fuel cell technologies
by Staff Writers
Liverpool, UK (SPX) Sep 15, 2016


The structure of one of the cage crystals loaded with water.

Scientists at the University of Liverpool have made an important breakthrough which could lead to the design of better fuel cell materials. In a paper published in 'Nature Communications', they demonstrate how they synthesised nanometre-sized cage molecules that can be used to transport charge in proton exchange membrane (PEM) applications. Proton-exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for clean and efficient power generation in the twenty-first century.

PEMFCs contain proton exchange membrane (PEM), which carries positively-charged protons from the positive electrode of the cell to the negative one. Most PEMs are hydrated and the charge is transferred through networks of water inside the membrane. To design better PEM materials, more needs to be known about how the structure of the membrane enables protons to move easily through it. However, many PEMs are made of amorphous polymers, so it is difficult to study how protons are conducted because the precise structure is not known.

Scientists from the University's Department of Chemistry synthesised molecules that enclose an internal cavity, forming a porous organic cage into which other smaller molecules can be loaded, such as water or carbon dioxide. When the cages form solid materials, they can arrange to form channels in which the small 'guest' molecules can travel from one cage to another.

The material forms crystals in which the arrangement of cages is very regular. This allowed the researchers to build an unambiguous description of the structure using crystallography, a technique that allows the positions of atoms to be located. The molecules are also soluble in common solvents, which means they could be combined with other materials and fabricated into membranes.

They measured the protonic conductivity of these porous organic cages after loading the channels with water, to assess their viability as PEM materials. The cages exhibited proton conductivities of up to 10-3 S cm1, which is comparable to some of the best porous framework materials in the literature.

In collaboration with researchers from the University of Edinburgh, Center for Neutron Research at National Institute of Standards and Technology (NIST), and (Defence Science and Technology Laboratory (DSTL), they used a combination of experimental measurements and computer simulations to build a rich picture of how protons are conducted by the cage molecules.

Two distinctive features of the proton conduction in organic cage crystals were highlighted as design principles for future PEM materials. First, the cages are arranged so that the channels extend in three dimensions. This means that the movement of the protons is not limited to a particular direction, as in the case of many porous materials tested so far.

Second, the cages direct the movement of the water molecules, which means that protons can be passed between them quickly. Also, the cages are flexible enough to allow the water to reorganize, which is also important when protons are transported from one water molecule to the next over longer distances.

Dr Ming Liu who led the experimental work, said: "In addition to introducing a new class of proton conductors, this study highlights design principles that might be extended to future materials.

"For example, the 'soft confinement' that we observe in these hydrated solids suggests new anhydrous proton conductors where a porous cage host positions and modulates the protonic conductivity of guest molecules other than water. This would facilitate the development of high temperature PEMFCs, as water loss would no longer be a consideration."

Liverpool Chemist, Dr Sam Chong, added: "The work also gives fundamental insight into proton diffusion, which is widely important in biology."

Dr Chong has recently been appointed as a lecturer in the University's Materials Innovation Factory (MIF). Due to open in 2017, the Pounds 68M MIF is set to revolutionise materials chemistry research and development through facilitating the discovery of new materials which have the potential to save energy and natural resources, improve health or transform a variety of manufacturing processes.

The paper 'Three-dimensional Protonic Conductivity in Porous Organic Cage Solids' is published in Nature Communications.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Liverpool
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Fuel cell membrane patented by Sandia outperforms market
Albuquerque NM (SPX) Sep 13, 2016
Fuel cells provide power without pollutants. But, as in the Goldilocks story, membranes in automobile fuel cells work at temperatures either too hot or too cold to be maximally effective. A polyphenyline membrane patented by Sandia National Laboratories, though, seems to work just about right, says Sandia chemist Cy Fujimoto. The membrane, which operates over a wide temperature range, last ... read more


ENERGY TECH
Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

Chinese giant to buy Pakistani power company for $1.6 bn

Economy of energy-hungry India may face headwinds

ENERGY TECH
Fuel cell membrane patented by Sandia outperforms market

Proton diffusion discovery a boost for fuel cell technologies

A first for direct-drive fusion

Fusion facilities at PPPL and Culham, England, could provide path to limitless energy

ENERGY TECH
Experts anticipate significant continued reductions in wind energy costs

Statoil complements portfolio with more wind

Super-tall wind turbines installed offshore Britain

British low-carbon target in doubt

ENERGY TECH
New perovskite research discoveries may lead to solar cell, LED advances

The Golden State gets greener with Interior decision

MiaSole aims to revolutionize flexible ultra-light solar technology

ERC to revolutionize efficiency, cost and stability of thin-film solar cells

ENERGY TECH
Britain approves Hinkley Point nuclear deal

Is nuclear crucial to climate change targets?

Hinkley Point: a huge nuclear gamble for France

Work starts on two new Iran nuclear reactors

ENERGY TECH
Tapping the unused potential of photosynthesis

Fish 'biowaste' converted to piezoelectric energy harvesters

Body heat as a power source

Croatian Pig Farm Uses Synergies to Generate Energy

ENERGY TECH
China's second space lab Tiangong-2 to be launched

Kuang-Chi near space test flight set for 2016

Vigil for Tiangong 2

Tiangong 2 is coming soon, real soon

ENERGY TECH
California governor signs sweeping climate bills

Technology and innovation not driven by climate change

Grassland tuned to present suffers in a warmer future

Climate pact: After years of talk, focus shifts to action




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement