Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
PPPL physicists build diagnostic that measures plasma velocity in real time
by Staff Writers
Princeton NJ (SPX) Nov 09, 2016


This is PPPL physicist Mario Podesta. Image courtesy Elle Starkman. For a larger version of this image please go here.

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a diagnostic that provides crucial real-time information about the ultrahot plasma swirling within doughnut-shaped fusion machines known as tokamaks. This device monitors four locations in a plasma, enabling the diagnostic to make rapid calculations of how the velocity profiles of ions inside the plasma evolves over time.

The results are among the first obtained from PPPL's National Spherical Torus Experiment-Upgrade (NSTX-U), the Laboratory's recently upgraded flagship machine. This research was supported by the DOE Office of Science (Fusion Energy Sciences).

In a paper in the November 2016 issue of Plasma Physics and Controlled Fusion, physicists Mario Podesta and Ron Bell report the successful commissioning and operation of the device, called a real time velocity (RTV) diagnostic, which could become part of a system for actively controlling the velocity of plasma rotation. "Control of rotation is critical for optimizing plasma stability against a range of instabilities," noted Stan Kaye, deputy program director for NSTX-U. Such stability is essential for fusion reactions to take place.

The diagnostic gathers information by observing what happens when a beam of neutral atoms is injected into the plasma. When these atoms interact with charged carbon ions in the plasma, the excited carbon atoms produce a photon of light that the diagnostic detects. The instrument deduces the velocity of the plasma ions by taking into account the Doppler effect - the same process that causes the pitch of sirens to sound higher when speeding toward someone and lower when rushing away.

The small number of measurements required is crucial to the calculation speed. "It's like the difference between building a road car and a race car," said Podesta. "When you build a race car, you strip out everything that's not necessary and push to increase performance.

Similarly, these four measurements give the minimum amount of information to infer the plasma's velocity as the plasma discharge evolves." In fact, previous experiments on the tokamak prior to its upgrade show that four measurements - each optimized to collect the maximum amount of light - are all researchers need to control the plasma rotation, given the built-in constraints of NSTX-U.

Real-time velocity measurement is not unique. Other tokamaks, like the Joint European Torus (JET) in England and JT-60U in Japan, have diagnostics that measure velocities in real time, though at a lower sampling rate than in the RTV diagnostic. Podesta and Bell wanted a diagnostic that gave a more complete picture of the plasma's velocity profile. Producing that kind of picture meant choosing the locations of the four measurement points very carefully.

"In addition," said Podesta, "plasmas in NSTX-U can evolve on time-scales that are faster than those typically observed in JET or JT-60U. Therefore, we needed to measure at higher sampling rates to have a better idea of how the velocity changes over time during a plasma discharge."

Because of its rapid calculations, the RTV diagnostic could one day fit into a larger system that allows scientists to fine-tune a plasma's velocity profile and optimize the plasma's performance during fusion operations.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Launching fusion reactions without a central magnet, or solenoid
Washington DC (SPX) Oct 28, 2016
The tokamak is an experimental chamber that holds a gas of energetic charged particles, plasma, for developing energy production from nuclear fusion. Most large tokamaks create the plasma with solenoids - large magnetic coils that wind down the center of the vessels and inject the current that starts the plasma and completes the magnetic field that holds the superhot gas in place. But future tok ... read more


ENERGY TECH
Deeper carbon cuts needed to avoid climate tragedy: UN

New program makes energy-harvesting computers more reliable

Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

ENERGY TECH
PPPL physicists build diagnostic that measures plasma velocity in real time

Salty batteries

Lithium ion extraction

Shoring up the power grid - with DIY scrap-metal batteries

ENERGY TECH
Alberta pushing hard on renewable energy pedal

Cuomo announces major progress in offshore wind development

New York set for offshore wind after environmental review

OX2 signs 148 MW wind power deal with Aquila Capital and Google

ENERGY TECH
Major advance in solar cells made from cheap, easy-to-use perovskite

Tesla expands its portfolio to produce solar roof tiles

CPP, SolarCity Deal Keeps Colton, Calif., Community Affordable and Sustainable

Schools in oil-rich Alberta to get solar panels

ENERGY TECH
Japan, India sign controversial civil nuclear deal

Vietnam to scrap planned nuclear plants: state media

French, Finns divided over nuclear dispute ruling

Russia, China Plan Documents to Build 2 New Tianwan Nuclear Power Plant Reactors

ENERGY TECH
Bioelectronics at the speed of life

NREL finds bacterium that uses both CO2 and cellulose to make biofuels

State partnerships can promote increased bio-energy production, reduce emissions

Turning biofuel waste into wealth in a single step

ENERGY TECH
Long March-5 reflects China's "greatest advancement" yet in rockets

New heavy-lift carrier rocket boosts China's space dream

Long March-7 being assembled, to transport Tianzhou-1

Kuaizhou-1 scheduled to launch in December

ENERGY TECH
UN climate talks to Trump: don't get left behind

Australia ratifies climate pact amid Trump fears

Africa hit worst by extreme weather in 2015

EU lagging on climate targets: study




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement