Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Novel Material Stores Unusually Large Amounts of Hydrogen
by Staff Writers
Hamburg, Germany (SPX) Nov 28, 2013


Formation of iridium trihydride inside a diamond anvil cell at a pressure of 100 GPa (gigapascals). The dark area at the center is iridium trihydride, the yellow areas are hydrogen. Credit: Thomas Scheler/University of Edinburgh.

An international team of researchers has synthesized a new material that stores an unusually large amount of hydrogen. Performing high-pressure X-ray studies at DESY's PETRA III and other light sources, the scientists detected the formation of previously unobserved iridium hydride from hydrogen and metallic iridium at a pressure of 55 gigapascals (GPa), corresponding to approximately 550,000 times the Earth's atmospheric pressure.

The new material can store up to three times more hydrogen than most other metal hydrides, and its synthesis may contribute to the development of high-capacity hydrogen fuel cells in cars and other applications.

The researchers from Edinburgh University (UK), Oviedo University (Spain) and DESY also showed that iridium hydride has an unexpected structure that does not occur in other known hydrides. Since a material's structure determines its mechanical and electronic properties, the new structure could potentially lead to the discovery of unprecedented properties. The study was published in the journal Physical Review Letters.

Hydrides as hydrogen-storing and superconducting materials
Chemical compounds of metals and hydrogen, called metal hydrides, are promising candidates for industrial hydrogen storage. Once hydrogen is released from the hydride, it can be further used to produce electricity in an environmentally friendly manner such as in fuel-cell-driven vehicles.

"In a broader sense, our research aims at a deeper understanding of how metal hydrides form and how the hydrogen can subsequently be extracted again," explains Thomas Scheler, the study's first author and former PhD student of Eugene Gregoryanz's group at Edinburgh University.

Another important application is the potential of metal hydrides to act as superconductors, i.e. materials that conduct electric currents without electrical resistance below a critical temperature. Such behavior has been observed or predicted for the hydrides of the noble metals palladium and platinum, for instance, and may also occur in the hydrides of other chemically related noble metals such as iridium.

However, iridium hydride had never been observed prior to this study, and the researchers consequently set out to synthesize it for the first time.

Synthesis of previously unobserved iridium hydride
At PETRA III's experimental station P02 for extreme conditions research, the scientists placed a piece of iridium inside a pressure cell, known as diamond anvil cell, which they subsequently loaded with hydrogen. The research team then compressed the sample using pressures as high as 125 GPa. Simultaneously, PETRA III's intense and bundled X-rays traversed the sample and revealed its structural changes with varying pressure.

"At 55 GPa, we observed new X-ray signals, which do not stem from metallic iridium and which became stronger and stronger with increasing pressure," explains Gregoryanz. The researchers concluded that iridium hydride had indeed formed as a new material phase.

However, the signals of the hydride were obscured by signals from residual iridium still present in the sample. "We therefore employed laser heating of the sample, which helped with the synthesis of iridium hydride," says DESY researcher Zuzana Konopkova. In the laser-heated sample, the hydride formed much faster without leaving residual iridium behind.

"Laser heating was only one of several experimental conditions that were crucial for the success of our experiments," adds Scheler. "The availability of fast detectors and high X-ray energies at P02 as well as PETRA III's extremely focused X-ray beam contributed as well."

Iridium hydride's unusual structure
When analyzing their data, the researchers noticed that the newly formed iridium hydride phase had an unusual structure. Normally, the formation of metal hydrides involves the widening of a metal's inner structure with hydrogen occupying the intermediate space between metal atoms. In these hydrides, hydrogen is not bound to the metal and typical hydrogen-to-metal ratios are close to 1.

In contrast, hydrogen becomes part of the crystal lattice in iridium hydride and forms a structure not observed in any other hydride.

"Our X-ray data suggest that the iridium atoms occupy the corner positions of a cube while hydrogen is located at the center of the faces in the simple cubic lattice," says Scheler. As a result, each iridium atom is surrounded by three hydrogen atoms, resulting in an iridium trihydride phase that can store up to three times more hydrogen than most other metal hydrides.

However, the identification of iridium trihydride from the X-ray data alone remains indirect because it can only be inferred from hydrogen-induced movements of the iridium atoms.

"Hydrogen itself, which is the lightest of all elements, is almost invisible to X-rays and we cannot determine its positions directly," explains Konopkova. Therefore, the researchers performed additional theoretical calculations, which supported the presence of a simple cubic lattice, albeit distorted, in iridium hydride.

Potential applications
The present study could potentially impact future developments of hydrogen-storage and hydrogen-fuel-cell technologies. Although iridium is too rare and too expensive for routine industrial applications, the synthesis of a novel iridium hydride material with a new structure and high hydrogen content may aid the search for other high-capacity metal hydrides.

Moreover, future research has yet to uncover iridium hydride's mechanical and electronic properties. "Our experiments revealed the material's structure," Gregoryanz says. "This information can now be used for theoretical predictions of its properties, including superconductivity."

"High-pressure synthesis and characterization of iridium trihydride"; T. Scheler, M. Marques, Z. Konopkova, C. L. Guillaume, R. T. Howie, and E. Gregoryanz; Phys. Rev. Lett. (2013); DOI: 10.1103/PhysRevLett.111.215503

.


Related Links
Deutsches Elektronen-Synchrotron
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Holistic Cell Design Leads to High-Performance, Long Cycle Lithium-Sulfur Battery
Berkeley CA (SPX) Nov 28, 2013
Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated in the laboratory a lithium-sulfur (Li/S) battery that has more than twice the specific energy of lithium-ion batteries, and that lasts for more than 1,500 cycles of charge-discharge with minimal decay of the battery's capacity. This is longest cycle life reported so far for any ... read more


ENERGY TECH
Founders of Envirofit Selected as Energy Innovators of the Year by The Economist

World's top carbon emitter China expands emissions trading

Are Canadian Energy Stocks Set for a Rebound?

Climate: Gloves off between EU, developing countries

ENERGY TECH
Novel Material Stores Unusually Large Amounts of Hydrogen

Researchers convert thermoelectric material into high performance electricity

Enhancing battery performance

X-rays reveal another feature of high-temperature superconductivity

ENERGY TECH
Small-Wind Power Market to Reach $3 Billion by 2020

Siemens achieves major step in type certification for 6MW Offshore Wind Turbine

IKEA invests in Canadian wind project

High bat mortality from wind turbines

ENERGY TECH
UC Davis West Village: Setting The Standard

Dow Corning and Tianwei New Energy Collaborate on Leading Edge Solar Solution

City of Aurora, Xcel Energy, EPA Celebrate New Community Solar Site

PROINSO delivers 310kWp to six commercial and residential solar PV installations in Japan

ENERGY TECH
World Bank says no money for nuclear power

Bomb blast near India nuclear plant kills six: police

Westinghouse Sees Promising Future for Nuclear Energy Development in Brazil

Japan director turns to crowdfunding for anti-nuclear film

ENERGY TECH
Microbiologists reveal unexpected properties of methane-producing microbe

Direvo completes lab scale development of low cost lactic acid production

Scripps Oceanography Researchers Engineer Breakthrough for Biofuel Production

Let's just harvest invasive species and the problem is solved

ENERGY TECH
China pursues "zero window" launch for lunar probe

China launches first moon rover mission

China names moon rover "Yutu"

China launches experimental satellite

ENERGY TECH
Underestimated future climate change?

The reality behind Europe's response to climate change

Pacific region faces economic risk from climate change: ADB

Even if emissions stop, carbon dioxide could warm Earth for centuries




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement