Subscribe to our free daily newsletters
  Energy News  

Subscribe to our free daily newsletters

New model of plasma stability could help researchers predict and avoid disruptions
by Staff Writers
Princeton NJ (SPX) May 11, 2017

Physicists Steve Sabbagh and Jack Berkery in front of the National Spherical Torus Experiment-Upgrade (NSTX-U). Image courtesy Elle Starkman.

Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have helped develop a new computer model of plasma stability in doughnut-shaped fusion machines known as tokamaks. The new model incorporates recent findings gathered from related research efforts and simplifies the physics involved so computers can process the program more quickly. The model could help scientists predict when a plasma might become unstable and then avoid the underlying conditions.

This research was reported in a paper published in Physics of Plasmas in February 2017, and received funding from the DOE's Office of Science (Fusion Energy Sciences).

The plasma stability code was written in part by Jack Berkery, a research scientist in the Applied Physics and Applied Mathematics Department at Columbia University who has been associated with PPPL for almost 10 years. He is working on this project with Steve Sabbagh, a senior research scientist and adjunct professor of applied physics at Columbia who has collaborated with PPPL for almost three decades. Both Berkery and Sabbagh are part of the Columbia group at PPPL.

The new research is the latest in the physicists' combined effort to develop a larger and more capable plasma-stabilizing computer program known as the Disruption Event Characterization and Forecasting (DECAF) code that will predict and help avoid disruptions.

Within tokamak plasmas, many forces balance to create a stable equilibrium. One force is an expanding pressure created by the intrinsic properties of the plasma - a soup of electrically charged particles. Another force is produced by magnets that confine the plasma, preventing it from touching the tokamak's inner walls and cooling down.

Plasma physicists and engineers want the plasma to be under as much magnetic pressure as possible, because high pressure means that the plasma particles are interacting more frequently, increasing both the chances that fusion reactions will occur and the amount of heat produced by the tokamak. Past research by Berkery and Sabbagh on machines including the National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL has shown that high plasma pressure can be contained in a stable way if other properties of the plasma, like the way in which it rotates, have particular characteristics.

"Ideally, you want to operate tokamaks at high pressure because to get good fusion performance, you want to have the highest pressure you can," Berkery continued. "Unfortunately, when you do that, instabilities can arise. So if you can find a way to stabilize the plasma, then you can operate your tokamak at a higher pressure."

The updated program was written to predict the conditions that would best contain the high-pressure plasma. The program, though, is only one component of the DECAF code, which includes many modules that each monitor different aspects of a plasma in an effort to determine when the plasma is becoming unstable. "For years, we've been investigating which conditions lead to instability and how we can try to avoid those conditions," Berkery said.

The code gathers information that includes the plasma's density, temperature, and the shape of the plasma's rotation. It then calculates which combinations of these conditions produce a stable plasma, simultaneously uncovering which combinations of conditions produce an unstable plasma. The new code specifically looks for signs of an oncoming unstable state known as a resistive wall mode.

A plasma enters this state when forces causing the plasma to expand are stronger than the forces confining the plasma. The plasma's intrinsic magnetic fields then expand outward and strike the interior of the tokamak's walls.

Research Report

Clarifying the mechanism for suppressing turbulence through ion mass
Tokyo, Japan (SPX) Apr 26, 2017
Seeking to further improve plasma performance, from March 7, 2017, plasma experiments utilizing deuterium ions, which have twice the mass of hydrogen, were initiated in the Large Helical Device (LHD) at the National Institute for Fusion Science (NIFS). In numerous plasma experiments being conducted in countries around the world, the use of deuterium is improving the confinement of heat and ... read more

Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Australia power grid leased to local-foreign consortium

Myanmar recovery linked to development of electrical grid

Poland central to EU energy diversification strategy

U.S. emissions generally lower last year

New model of plasma stability could help researchers predict and avoid disruptions

Can the motion of checking your smartwatch charge it?

NRL breakthrough enables safer alternative to lithium-ion batteries

Super P carbon black for reversible lithium and sodium ion storage

Dutch open 'world's largest offshore' wind farm

Scientists track porpoises to assess impact of offshore wind farms

OX2 will manage a 45 MW wind farm owned by IKEA Group in Lithuania

Building Energy celebrates the beginning of operations and electricity generation of its first wind farm

First test flight of stratospheric solar plane

New device turns dirty air into energy

Installing solar to combat national security risks in the power grid

New technology generates power from polluted air

Tunnel collapse at US nuclear site raises safety concerns

Plutonium research to aid nuclear cleanup techniques

EU Plans to Hand Over Control of Euratom Nuclear Waste on UK Soil to London

Tunnel collapses at US nuke site, no radiation leak

New breakthrough makes it easier to turn old coffee waste into cleaner biofuels

Enhancing the efficiency of cereal straw for biofuel production

Biomass powering U.S. military base

First EPA-approved outdoor field trial for genetically engineered algae

Texas drilling data paints fluid picture

Chinese business group visits oil-rich Alberta

Oil prices awaken on draw in inventories

Russian researcher claims edge in Arctic oil and gas

Edible insects could play key role in cutting harmful emissions

Extinction of Alpine plants may remain undetectable for a long time

Trump anti-climate ghost hangs over UN meeting

Climate instability over the past 720,000 years

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement