Subscribe free to our newsletters via your
  Energy News  

Subscribe free to our newsletters via your

New Material Provides 25 Percent Greater Thermoelectric Conversion Efficiency

Ames Lab
by Staff Writers
Ames IA (SPX) Feb 21, 2011
Automobiles, military vehicles, even large-scale power generating facilities may someday operate far more efficiently thanks to a new alloy developed at the U.S. Department of Energy's Ames Laboratory. A team of researchers at the Lab that is jointly funded by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and the Defense Advanced Research Projects Agency, achieved a 25 percent improvement in the ability of a key material to convert heat into electrical energy.

"What happened here has not happened anywhere else," said Evgenii Levin, associate scientist at Ames Laboratory and co-principal investigator on the effort, speaking of the significant boost in efficiency documented by the research. Along with Levin, the Ames Lab-based team included: Bruce Cook, scientist and co-principal investigator; Joel Harringa, assistant scientist II; Sergey Bud'ko, scientist; and Klaus Schmidt-Rohr, faculty scientist. Also taking part in the research was Rama Venkatasubramanian, who is director of the Center for Solid State Energetics at RTI International, located in North Carolina.

So-called thermoelectric materials that convert heat into electricity have been known since the early 1800s. One well-established group of thermoelectric materials is composed of tellurium, antimony, germanium and silver, and thus is known by the acronym "TAGS." Thermoelectricity is based on the movement of charge carriers from their heated side to their cooler side, just as electrons travel along a wire.

The process, known as the Seebeck effect, was discovered in 1821 by Thomas Johann Seebeck, a physicist who lived in what is now Estonia. A related phenomenon observed in all thermoelectric materials is known as the Peltier effect, named after French physicist Jean-Charles Peltier, who discovered it in 1834. The Peltier effect can be utilized for solid-state heating or cooling with no moving parts.

In the nearly two centuries since the discovery of the Seebeck and Peltier effects, practical applications have been limited due to the low efficiency with which the materials performed either conversion. Significant work to improve that efficiency took place during the 1950s, when thermoelectric conversion was viewed as an ideal power source for deep-space probes, explained team member Cook. "Thermoelectric conversion was successfully used to power the Voyager, Pioneer, Galileo, Cassini, and Viking spacecrafts," he said.

Despite its use by NASA, the low efficiency of thermoelectric conversion still kept it from being harnessed for more down-to-earth applications - even as research around the world continued in earnest. "Occasionally, you would hear about a large increase in efficiency," Levin explained. But the claims did not hold up to closer scrutiny.

All that changed in 2010, when the Ames Laboratory researchers found that adding just one percent of the rare-earth elements cerium or ytterbium to a TAGS material was sufficient to boost its performance.

The results of the group's work appeared in the article, "Analysis of Ce- and Yb-Doped TAGS-85 Materials with Enhanced Thermoelectric Figure of Merit," published online in November 2010 in the journal Advanced Functional Materials (see below).

The team has yet to understand exactly why such a small compositional change in the material is able to profoundly affect its properties. However, they theorize that doping the TAGS material with either of the two rare-earth elements could affect several possible mechanisms that influence thermoelectric properties.

Team member Schmidt-Rohr studied the materials using Ames Laboratory's solid-state nuclear magnetic resonance spectroscopy instruments. This enabled the researchers to verify that the one percent doping of cerium or ytterbium affected the structure of the thermoelectric material.

In order to understand effect of magnetism of rare earths, team member Bud'ko studied magnetic properties of the materials. "Rare-earth elements modified the lattice," said Levin, referring to the crystal structure of the thermoelectric materials.

The group plans to test the material in order to better understand why the pronounced change took place and, hopefully, to boost its performance further.

The durable and relatively easy-to-produce material has innumerable applications, including recycling waste heat from industrial refineries or using auto exhaust heat to help recharge the battery in an electric car. "It's a very amazing area," Levin said, particularly since many years of prior research into TAGS materials enables researchers to understand their nature. Better understanding of the thermoelectric and their improvement can immediately result in applications at larger scale than now.

Additionally, the Ames Laboratory results - dependent as they were on doping TAGS with small amounts of cerium or ytterbium - provide yet more evidence of rare-earth elements' strategic importance. Cerium or ytterbium are members of a group of 15 lanthanides, deemed essential to just about every new technology from consumer electronics and cell phones to hybrid car batteries and generator motors in wind turbines.

The Ames Laboratory has been a leader in rare-earth research going back to the closing days of World War II. Fears of shortages of rare-earth elements have caused these little-known materials to be a much-talked-about subject in the news lately.

Share This Article With Planet Earth DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook

Related Links
Powering The World in the 21st Century at

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Ultra-Clean And Reliable Power Generation Drives Purchase Of Direct Fuelcell Power Plant
Danbury CT (SPX) Feb 17, 2011
FuelCell Energy, Inc. a leading manufacturer of ultra-clean, efficient and reliable power plants using renewable and other fuels for commercial, industrial, government, and utility customers, has announced the sale of a 300 kilowatt DFC300 to be installed at the Quadrant 3 re-development project on Regent Street in central London, England. The fuel cell is expected to help the project meet clean ... read more

Energy sector deals to increase, PwC says

Vietnam to hike electricity prices

S.Korea, China firms in Vietnam power deal

US issues cheaper boiler rules

New Material Provides 25 Percent Greater Thermoelectric Conversion Efficiency

China moves fast on Libya evacuation plans

Nigerian state energy firm wants to boost exports to China

Chinese footprint in Argentina oil grows

Eon to build fifth U.K. offshore wind farm

GL Garrad Hassan Launches Onshore Wind Resource Mapping For UK

Construction Begins On Dempsey Ridge Wind Project

India's Suzlon wins $1.28 bn wind power deal

SolarLease Arrives In Massachusetts, New Jersey, New York And Pennsylvania

Solar lights give more than they take

Mimicking Photosynthesis Path To Solar-Derived Hydrogen Fuel

Vanguard Energy Partners Builds Five Solar Arrays In New Jersey

Enhancing Nuclear Security: Training And International Collaboration

Spent Nuclear Fuel Is Anything But Waste

Saudi, France sign peaceful nuclear cooperation pact

Unrest delay Egypt's nuclear power plant tender

Green Chemistry Offers Route Towards Zero-Waste Production

Agave Has Tremendous Potential As New Bioenergy Feedstock

Promise And Limits Of Biomass Energy In The Northeast

The Green Machine: Algae Clean Wastewater, Convert To Biodiesel

China Mars probe set for November launch

Shenzhou 8 Mission Could Top Three Weeks

U.S. wary of China space weapons

Slow progress in U.S.-China space efforts

'Black carbon' key to tackling climate threat: UN report

Black Carbon And Tropospheric Ozone's Role In Climate Change

Climate Projections Show Human Health Impacts Possible Within 30 Years

50 million 'environmental refugees' by 2020, experts say

The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement