Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Lithium-ion batteries: Capacity might be increased by 6 times
by Staff Writers
Berlin, Germany (SPX) Aug 15, 2016


Lithium ions migrate through the electrolyte (yellow) into the layer of crystalline silicon (c-Si). During the charging cycle, a 20-nm layer (red) develops on the silicon electrode adsorbing extreme quantities of lithium atoms. Image courtesy HZB. For a larger version of this image please go here.

The team was able to show through neutron measurements made at the Institut Laue-Langevin in Grenoble, France, that lithium ions do not penetrate deeply into the silicon. During the charge cycle, a 20-nm anode layer develops containing an extremely high proportion of lithium. This means extremely thin layers of silicon would be sufficient to achieve the maximal load of lithium.

Lithium-ion batteries provide laptops, smart phones, and tablet computers with reliable energy. However, electric vehicles have not gotten as far along with conventional lithium-ion batteries.

This is due to currently utilised electrode materials such as graphite only being able to stably adsorb a limited number of lithium ions, restricting the capacity of these batteries.

Semiconductor materials like silicon are therefore receiving attention as alternative electrodes for lithium batteries. Bulk silicon is able to absorb enormous quantities of lithium. However, the migration of the lithium ions destroys the crystal structure of silicon. This can swell the volume by a factor of three, which leads to major mechanical stresses.

Now a team from the HZB Institute for Soft Matter and Functional Materials headed by Prof. Matthias Ballauff has directly observed for the first time a lithium-silicon half-cell during its charging and discharge cycles.

"We were able to precisely track where the lithium ions adsorb in the silicon electrode using neutron reflectometry methods, and also how fast they were moving", comments Dr. Beatrix-Kamelia Seidlhofer, who carried out the experiments using the neutron source located at the Institute Laue-Langevin.

Lithium-rich layer of only 20 nanometer
She discovered two different zones during her investigations. Near the boundary to the electrolytes, a roughly 20-nm layer formed having extremely high lithium content: 25 lithium atoms were lodged among 10 silicon atoms.

A second adjacent layer contained only one lithium atom for ten silicon atoms. Both layers together are less than 100 nm thick after the second charging cycle.

Theoretical maximum capacity
After discharge, about one lithium ion per silicon node in the electrode remained in the silicon boundary layer exposed to the electrolytes.

Seidlhofer calculates from this that the theoretical maximum capacity of these types of silicon-lithium batteries lies at about 2300 mAh/g. This is more than six times the theoretical maximum attainable capacity for a lithium-ion battery constructed with graphite (372 mAh/g).

Less is more
These are substantial findings that could improve the design of silicon electrodes: very thin silicon films should be sufficient for adsorbing the maximum possible amount of lithium, which in turn would save on material and especially on energy consumed during manufacture - less is more!

Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity, ACS Nano. Beatrix-Kamelia Seidlhofer, Bujar Jerliu, Marcus Trapp, Erwin Huger, Sebastian Risse, Robert Cubitt, Harald Schmidt, Roland Steitz, and Matthias Ballauff.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Stanford-led team reveals nanoscale secrets of rechargeable batteries
Stanford CA (SPX) Aug 10, 2016
Better batteries that charge quickly and last a long time are a brass ring for engineers. But despite decades of research and innovation, a fundamental understanding of exactly how batteries work at the smallest of scales has remained elusive. In a paper published this week in the journal Science, a team led by William Chueh, an assistant professor of materials science and engineering at S ... read more


ENERGY TECH
Low sales prices hit Czech power giant CEZ in H1

New MIT system can identify how much power is being used by each device in a household

ORNL-led study analyzes electric grid vulnerabilities in extreme weather areas

Carbon-financed cookstove fails to deliver hoped-for benefits in the field

ENERGY TECH
Making nail polish while powering fuel cells

Stanford-led team reveals nanoscale secrets of rechargeable batteries

Simulating complex catalysts key to making cheap, powerful fuel cells

Lithium-ion batteries: Capacity might be increased by 6 times

ENERGY TECH
Wind power fiercer than expected

OX2 wins EPC contract for 112 MW wind power in Norway

E.ON starts new wind farm in Texas

Offshore wind the next big thing, industry group says

ENERGY TECH
Installation of 2nd MW-scale sun2live solar power plant in Antigua has commenced

Material for polymer solar cells may lend itself to large-area processing

Tiny high-performance solar cells turn power generation sideways

ORNL optimizes formula for cadmium-tellurium solar cells

ENERGY TECH
Nuclear Inspection Benefits from New Generation Sensor Lens

South Korea Relaunches Wolsong NPP's Reactor After Fixing Technical Problem

Japan reactor restarts in post-Fukushima nuclear push

Bulgaria seeks private money for nuclear plant

ENERGY TECH
Biofuel production technique could reduce cost, antibiotics use

National Trust historic home enjoys 21st Century heat

Patented bioelectrodes have electrifying taste for waste

The Thai village using poop to power homes

ENERGY TECH
China launches first mobile telecom satellite

China prepares for new round of manned space missions

China begins developing hybrid spacecraft

China to expand int'l astronauts exchange

ENERGY TECH
Newly discovered 'blue whirl' fire tornado burns cleaner for reduced emissions

Hidden, local climate impacts of drought-friendly vegetation

U of T researchers reduce climate-warming CO2 to building blocks for fuels

Mountain environments more vulnerable to climate change than previously reported




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement