Energy News  





. Dramatic Increase In Thermoelectric Efficiency Achieved

A cross-section of nano-crystalline bismuth antimony telluride grains, as viewed through transmission electron microscope. Colors highlight the features of each grain of the semiconductor alloy in bulk form. A team of researchers from Boston College and MIT produced a major increase in thermoelectric efficiency after using nanotechnology to structure the material, which is commonly used in industry and research. Image / Boston College, MIT, and GMZ Inc.
by Ed Hayward
Boston MA (SPX) Mar 27, 2008
Researchers at Boston College and MIT have used nanotechnology to achieve a major increase in thermoelectric efficiency, a milestone that paves the way for a new generation of products - from semiconductors and air conditioners to car exhaust systems and solar power technology - that run cleaner.

The team's low-cost approach, details of which are published today in the online version of the journal Science, involves building tiny alloy nanostructures that can serve as micro-coolers and power generators. The researchers said that in addition to being inexpensive, their method will likely result in practical, near-term enhancements to make products consume less energy or capture energy that would otherwise be wasted.

The findings represent a key milestone in the quest to harness the thermoelectric effect, which has both enticed and frustrated scientists since its discovery in the early 19th century. The effect refers to certain materials that can convert heat into electricity and vice versa. But there has been a hitch in trying to exploit the effect: most materials that conduct electricity also conduct heat, so their temperature equalizes quickly.

In order to improve efficiency, scientists have sought materials that will conduct electricity but not similarly conduct heat.

Using nanotechnology, the researchers at BC and MIT produced a big increase in the thermoelectric efficiency of bismuth antimony telluride - a semiconductor alloy that has been commonly used in commercial devices since the 1950s - in bulk form. Specifically, the team realized a 40 percent increase in the alloy's figure of merit, a term scientists use to measure a material's relative performance.

The achievement marks the first such gain in a half-century using the cost-effective material that functions at room temperatures and up to 250 degrees Celsius. The success using the relatively inexpensive and environmentally friendly alloy in bulk form means the discovery can quickly be applied to a range of uses, leading to higher cooling and power generation efficiency.

"By using nanotechnology, we have found a way to improve an old material by breaking it up and then rebuilding it in a composite of nanostructures in bulk form," said Boston College physicist Zhifeng Ren, one of the leaders of the project. "This method is low cost and can be scaled for mass production. This represents an exciting opportunity to improve the performance of thermoelectric materials in a cost-effective manner."

"These thermoelectric materials are already used in many applications, but this better material can have a bigger impact," said Gang Chen, the Warren and Towneley Rohsenow Professor of Mechanical Engineering at MIT and another leader of the project.

At its core, thermoelectricity is the "hot and cool" issue of physics. Heating one end of a wire, for example, causes electrons to move to the cooler end, producing an electric current. In reverse, applying a current to the same wire will carry heat away from a hot section to a cool section. Phonons, a quantum mode of vibration, play a key role because they are the primary means by which heat conduction takes place in insulating solids.

Bismuth antimony telluride is a material commonly used in thermoelectric products, and the researchers crushed it into a nanoscopic dust and then reconstituted it in bulk form, albeit with nanoscale constituents. The grains and irregularities of the reconstituted alloy dramatically slowed the passage of phonons through the material, radically transforming the thermoelectric performance by blocking heat flow while allowing the electrical flow.

In addition to Ren and six researchers at his BC lab, the international team involved MIT researchers, including Chen and Institute Professor Mildred S. Dresselhaus; research scientist Bed Poudel at GMZ Energy, Inc, a Newton, Mass.-based company formed by Ren, Chen, and CEO Mike Clary; as well as BC visiting Professor Junming Liu, a physicist from Nanjing University in China.

Thermoelectric materials have been used by NASA to generate power for far-away spacecraft. These materials have been used by specialty automobile seat makers to keep drivers cool during the summer. The auto industry has been experimenting with ways to use thermoelectric materials to convert waste heat from a car exhaust systems into electric current to help power vehicles.

Community
Email This Article
Comment On This Article

Related Links
Powering The World in the 21st Century at Energy-Daily.com




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
Sanford, Florida Chooses MaxWest Environmental Systems To Turn Sludge Into Renewable Energy
Sanford FL (SPX) Mar 27, 2008
Sanford, Florida will be the first municipality in North America to adopt the MaxWest gasification system as an efficient, cost-effective and environmentally friendly way to dispose of biosolids. MaxWest Environmental Systems of Houston Texas has developed the gasification system, which converts sludge from the municipal wastewater treatment system into renewable, green energy.

.
Get Our Free Newsletters Via Email
  



  • Sanford, Florida Chooses MaxWest Environmental Systems To Turn Sludge Into Renewable Energy
  • Analysis: Oil tax upped in Venezuela
  • Dramatic Increase In Thermoelectric Efficiency Achieved
  • Parker Awarded Ohio Grant To Advance Wind Energy Technology

  • Unite Calls For International Standard Design For New Nuclear Power Stations
  • NRG Forms Company To Develop Advanced Boiling Water Reactor Nuclear Power Projects
  • Toshiba expands in US with NRG nuclear tie-up
  • Mubarak aims for Russian nuclear technology, arms: media

  • Scientists Identify Origin Of Hiss In Upper Atmosphere
  • NASA Co-Sponsors Ocean Voyage To Probe Climate-Relevant Gases
  • Satellite Data To Deliver State-Of-The-Art Air Quality Information
  • New Model Revises Estimates Of Terrestrial Carbon Dioxide Uptake

  • Macedonia plants two million trees to revive its forests
  • Deforestation Worsening In Brazil Claims Greenpeace
  • Secrets Of Cooperation Between Trees And Fungi Revealed
  • Researcher: Wild California just a memory

  • Are Organic Crops As Productive As Conventional
  • Corn's Roots Dig Deeper Into South America
  • Prized fish the latest liquid asset for Asia's super-rich
  • Mediterranean tuna at risk from 'bloated' fishing fleet: WWF

  • ECOtality's eTec To Conduct Testing Of Chevrolet Tahoe Hybrid Electric Vehicles
  • Argonne And DoT Open Transportation Research And Computing Center
  • Clean-Vehicle Research Initiative Making Progress
  • New Lung Association Study Shows 142 Billion Dollar Benefit Of Converting To Zero-Emission Vehicles By 2030

  • Europe's EADS finds sweet home in Alabama despite uproar
  • A380 superjumbo makes European debut in London
  • Aviation industry must act fast on climate change: Airbus chief
  • Northrop, EADS to invest 600 mln dlrs in Alabama site

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement