Energy News  
ENERGY TECH
Development of a new thermoelectric material for a sustainable society
by Staff Writers
Toyohashi, Japan (SPX) Oct 27, 2016


Picture of the synthesized bulk CaMgSi thermoelectric material through the procedure developed in this study. Image courtesy Toyohashi University Of Technology.

Thermoelectric materials, which can directly convert thermal energy into electrical energy (Seebeck effect), can be effectively used for the development of a clean and environmentally compatible power-generation technology. However, these materials are not commonly used for practical applications as they mostly include toxic and/or expensive elements.

Recently, researchers at the Materials Function Control Laboratory at the Toyohashi University of Technology and the Nagoya Institute of Technology have successfully synthesized a new thermoelectric material, CaMgSi, which is an intermetallic compound. The key to this development was the synthesis procedure; bulk CaMgSi intermetallic compound was synthesized by combining mechanical ball-milling (MM) and pulse current sintering (PCS) processes.

"Appearance of thermoelectric property in the intermetallic compound, CaMgSi, has been predicted by both theoretical and experimental studies", explain the researchers of this work, Nobufumi Miyazaki and Nozomu Adachi."

However, the biggest issue in front of us was the synthesis of thermoelectric CaMgSi of optimal size ", they continued. In general, alloys are produced by mixing the constituent elements in their molten forms. However, when a temperature is raised up to the melting temperature of Si, Mg vapors; liquids of Ca, Mg, and Si cannot exists at same time.

Associate Professor Yoshikazu Todaka says "To overcome the aforementioned problem, we chose the mechanical ball milling process to mix the elements homogeneously, without melting, and then a chemical reaction between Ca, Mg, and Si was induced using the pulse current sintering process".

Consequently, the intermetallic compound, CaMgSi, with sufficient size was synthesized. The thermoelectric property of the synthesized CaMgSi exhibited a performance comparable to that of the previously developed Mg-based thermoelectric materials. It is expected that an addition of a fourth element to CaMgSi renders it with superior thermoelectric properties.

Interestingly, they found that the novel thermoelectric can exhibit both n- and p-type conductivity with a slight change in the composition of CaMgSi. Such a property for the material is very significant for its application in power-generation modules.

The new thermoelectric material synthesized in this study is composed of lightweight elements, and has a low density of 2.2 g/cm3. Therefore, one of the possible applications of the material is in automobiles to utilize waste heat emitted from engines. These findings could contribute to the development of green energy technology.

Research paper: Nobufumi Miyazaki, Nozomu Adachi, Yoshikazu Todaka, Hidetoshi Miyazaki, and Yoichi Nishino (2017). Thermoelectric property of bulk CaMgSi intermetallic compound, Journal of Alloys and Compounds, 691, 914-918. 10.1016/j.jallcom.2016.08.227


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Toyohashi University of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Scientists find static 'stripes' of electrical charge in copper-oxide superconductor
Upton NY (SPX) Oct 20, 2016
Cuprates, or compounds made of copper and oxygen, can conduct electricity without resistance by being "doped" with other chemical elements and cooled to temperatures below minus 210 degrees Fahrenheit. Despite extensive research on this phenomenon - called high-temperature superconductivity - scientists still aren't sure how it works. Previous experiments have established that ordered arra ... read more


ENERGY TECH
Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

ENERGY TECH
Ultralow power transistors could function for years without a battery

Scientists find static 'stripes' of electrical charge in copper-oxide superconductor

Scientists measure how ions bombard fusion device walls

Improved water splitting advances renewable energy conversion

ENERGY TECH
OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

Wind turbines killing more than just local birds

California eyes wind, wave potential

ENERGY TECH
Renewable energy on the rise, IEA finds

Researchers discover ways to expand temperature stability range of solar cells

Move over, solar: The next big renewable energy source could be at our feet

Senegal in renewables drive as new solar park unveiled

ENERGY TECH
Bulgaria to pay Russia 600 mn euros for dropped nuclear plant

Germany approves controversial nuclear waste deal

Anti-nuclear politician's win hurts Japan atomic push

Japan nuclear reactor shuttered for safety work

ENERGY TECH
Biomass heating could get a 'green' boost with the help of fungi

Algae discovery offers potential for sustainable biofuels

The road to green hydrogen runs through mazes in algal proteins

Nano-spike catalysts convert carbon dioxide directly into ethanol

ENERGY TECH
Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

China closer to establishing permanent space station

ENERGY TECH
Concentration of CO2 in atmosphere hits new high: UN

Drought, hunger add to South Sudan's woes

Indonesia ratifies Paris climate accord

Soil moisture, snowpack data could help predict 'flash droughts'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.