Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Conductive electrodes are key to fast-charging batteries
by Staff Writers
Philadelphia PA (SPX) Jul 12, 2017


Drexel University researchers have developed two new electrode designs, using MXene material, that will allow batteries to charge much faster. The key is a microporous design that allows ions to quickly make their way to redox active sites. Image courtesy Drexel University.

Can you imagine fully charging your cell phone in just a few seconds? Researchers in Drexel University's College of Engineering can, and they took a big step toward making it a reality with their recent work unveiling of a new battery electrode design in the journal Nature Energy.

The team, led by Yury Gogotsi, PhD, Distinguished University and Bach professor in Drexel's College of Engineering, in the Department of Materials Science and Engineering, created the new electrode designs from a highly conductive, two-dimensional material called MXene. Their design could make energy storage devices like batteries, viewed as the plodding tanker truck of energy storage technology, just as fast as the speedy supercapacitors that are used to provide energy in a pinch - often as a battery back-up or to provide quick bursts of energy for things like camera flashes.

"This paper refutes the widely accepted dogma that chemical charge storage, used in batteries and pseudocapacitors, is always much slower than physical storage used in electrical double-layer capacitors, also known as supercapacitors," Gogotsi said. "We demonstrate charging of thin MXene electrodes in tens of milliseconds. This is enabled by very high electronic conductivity of MXene. This paves the way to development of ultrafast energy storage devices than can be charged and discharged within seconds, but store much more energy than conventional supercapacitors."

The key to faster charging energy storage devices is in the electrode design. Electrodes are essential components of batteries, through which energy is stored during charging and from which it is disbursed to power our devices. So the ideal design for these components would be one that allows them to be quickly charged and store more energy.

To store more energy, the materials should have places to put it. Electrode materials in batteries offer ports for charge to be stored. In electrochemistry, these ports, called "redox active sites" are the places that hold an electrical charge when each ion is delivered. So if the electrode material has more ports, it can store more energy - which equates to a battery with more "juice."

Collaborators Patrice Simon, PhD, and Zifeng Lin, from Universite Paul Sabatier in France, produced a hydrogel electrode design with more redox active sites, which allows it to store as much charge for its volume as a battery. This measure of capacity, termed "volumetric performance," is an important metric for judging the utility of any energy storage device.

To make those plentiful hydrogel electrode ports even more attractive to ion traffic, the Drexel-led team, including researchers Maria Lukatskaya, PhD, Sankalp Kota, a graduate student in Drexel's MAX/MXene Research Group led by Michel Barsoum, PhD, distinguished professor in the College of Engineering; and Mengquiang Zhao, PhD, designed electrode architectures with open macroporosity - many small openings - to make each redox active sites in the MXene material readily accessible to ions.

"In traditional batteries and supercapacitors, ions have a tortuous path toward charge storage ports, which not only slows down everything, but it also creates a situation where very few ions actually reach their destination at fast charging rates," said Lukatskaya, the first author on the paper, who conducted the research as part of the A.J. Drexel Nanomaterials Institute. "The ideal electrode architecture would be something like ions moving to the ports via multi-lane, high-speed 'highways,' instead of taking single-lane roads. Our macroporous electrode design achieves this goal, which allows for rapid charging - on the order of a few seconds or less."

The overarching benefit of using MXene as the material for the electrode design is its conductivity. Materials that allow for rapid flow of an electrical current, like aluminum and copper, are often used in electric cables. MXenes are conductive, just like metals, so not only do ions have a wide-open path to a number of storage ports, but they can also move very quickly to meet electrons there. Mikhael Levi, PhD, and Netanel Shpigel, research collaborators from Bar-Ilan University in Israel, helped the Drexel group maximize the number of the ports accessible to ions in MXene electrodes.

Use in battery electrodes is just the latest in a series of developments with the MXene material that was discovered by researchers in Drexel's Department of Materials Science and Engineering in 2011. Since then, researchers have been testing them in a variety of applications from energy storage to electromagnetic radiation shielding, and water filtering. This latest development is significant in particular because it addresses one of the primary problems hindering the expansion of the electric vehicle market and that has been lurking on the horizon for mobile devices.

"If we start using low-dimensional and electronically conducting materials as battery electrodes, we can make batteries working much, much faster than today," Gogotsi said. "Eventually, appreciation of this fact will lead us to car, laptop and cell-phone batteries capable of charging at much higher rates - seconds or minutes rather than hours."

Research paper

ENERGY TECH
First battery-free cellphone makes calls by harvesting ambient power
Seattle WA (SPX) Jul 10, 2017
University of Washington researchers have invented a cellphone that requires no batteries - a major leap forward in moving beyond chargers, cords and dying phones. Instead, the phone harvests the few microwatts of power it requires from either ambient radio signals or light. The team also made Skype calls using its battery-free phone, demonstrating that the prototype made of commercial, of ... read more

Related Links
A.J. Drexel Nanomaterials Institute
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Google's 'moonshot' factory spins off geothermal unit

Fighting global warming and climate change requires a broad energy portfolio

Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

ENERGY TECH
First battery-free cellphone makes calls by harvesting ambient power

PPPL researchers demonstrate first hot plasma edge in a fusion facility

Conductive electrodes are key to fast-charging batteries

Iron secrets behind superconductors unlocked

ENERGY TECH
Owls' wings could hold the key to beating wind turbine noise

Algeria seen as African leader for renewable energy

Thrive Renewables delivers mezzanine funded wind farms in Scotland

It's a breeze: How to harness the power of the wind

ENERGY TECH
Meniscus-assisted technique produces high efficiency perovskite PV films

There Will Always be Sun on this Horizon

SolarEdge Launching First PV Inverter-Integrated Electric Vehicle Charger

Investors Generate 174,000,000 kWh of Renewable Electricity

ENERGY TECH
France could close a third of nuclear reactors: minister

Mitsubishi, Assystem take stakes in France's nuclear reactors firm

Britain must leave EU nuclear body: Verhofstadt

Sixth MOX nuclear shipment leaves France for Japan

ENERGY TECH
Cutting the cost of ethanol, other biofuels and gasoline

Solving a sweet problem for renewable biofuels and chemicals

A whole-genome sequenced rice mutant resource for the study of biofuel feedstocks

New biofuel technology significantly cuts production time

ENERGY TECH
Oklahoma says economic recovery under oil price pressure

Energy jobs on the decline, but not production, IEA finds

Norway's oil production higher year-over-year

More oil discovered off the coast of Senegal

ENERGY TECH
Scientists upgrade database tracking global temperatures across millennia

Two significant warming intervals in southern China since 1850

Bloomberg outlines plan to quantify US climate efforts

G20: Compromise on climate change, but at what cost?




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement