Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Clarifying the mechanism for suppressing turbulence through ion mass
by Staff Writers
Tokyo, Japan (SPX) Apr 26, 2017


This is a schematic image of trapped electron instability and the mechanism for the suppression of turbulence in deuterium plasma. When ion mass is larger, instabilities are reduced and the zonal flow increases, and the loss of heat and particles in the plasma is suppressed. Image courtesy Dr. Motoki Nakata.

Seeking to further improve plasma performance, from March 7, 2017, plasma experiments utilizing deuterium ions, which have twice the mass of hydrogen, were initiated in the Large Helical Device (LHD) at the National Institute for Fusion Science (NIFS).

In numerous plasma experiments being conducted in countries around the world, the use of deuterium is improving the confinement of heat and particles. That is, the phenomenon called "ion mass effect," in which plasma performance is improved, is observed.

However, we do not yet understand the detailed physical mechanism of how the increase in ion mass is linked to performance improvement. This has been one of the most important unsolved problems in plasma physics and fusion research from its beginning.

In the plasmas confined in the magnetic field there are various types of waves. In particular conditions those waves grow as time passes, and the so-called "instability" occurs and the plasma becomes turbulent.

According to research to date, there has been found to occur a unique flow structure called "zonal flow" that is formed spontaneously in a turbulent plasma. Zonal flows take the stripe structure that flows in the opposite direction to each other, and these flows are known to perform an important role in the suppression of the turbulence.

However, there remain many unclarified aspects regarding the conditions by which turbulence and zonal flows are formed. If influences brought about by differences in ion mass can be clarified theoretically, we can accurately predict confinement improvements that are observed in experiments. And because we can link confinement improvement to further enhancement of plasma performance, new developments in research are anticipated.

The research group of Professor Motoki Nakata, through collaborative research with Professor Tomohiko Watanabe of Nagoya University, conducted five-dimensional plasma turbulence simulations utilizing the "Plasma Simulator" at NIFS and the cutting-edge supercomputer "K" at the RIKEN Advanced Institute for Computational Science in order to analyze instabilities (trapped electron modes) caused by electrons that move back and forth along the magnetic field lines and to analyze in detail the turbulence generated from the instability.

As a result, we clarified that the influence of the ion mass appeared remarkably in a high-density plasma and that the detailed physical mechanism in which turbulence is suppressed through an effect caused by electron-ion collisions.

Further, we discovered that those phenomena exist in both helical and tokamak plasmas. Thus, we were able to clarify the "ion mass effect" broadly observed and one of the important mechanisms to improve plasma performance.

The detailed mechanism that suppresses turbulence is explained below. Turbulence caused due to trapped electron instability weakens the confinement of plasma heat and particles. The collisions among trapped electrons and ions suppress instabilities (suppressing the growth of waves). At a fixed temperature, collisions occur frequently at higher plasma densities.

Here, the impacts of collisions in deuterium plasma are remarkable in comparison to hydrogen. As a result, turbulence can be suppressed (Figure 1). Further, we clarified that in the condition in which the instability has weakened, the "zonal flow" becomes stronger and further suppresses the turbulence by grinding large eddies and waves, and eventually improves the confinement of heat and particles (Figure 2).

As has been clarified above, a complete image of turbulence suppression in a plasma with large ion mass may be expressed schematically as in Figure 3. These research results provide fundamental knowledge regarding the complete clarification of the "ion mass effect" which was an unsolved issue for many years in plasma physics and fusion research.

Further, the results are anticipated to be beneficial in improving plasma not only in helical devices such as LHD, but also in tokamaks as represented by the International Thermonuclear Experimental Reactor (ITER), which is currently under construction.

Research paper

ENERGY TECH
Scientists further understanding of a process that causes heat loss in fusion devices
Plainsboro NJ (SPX) Apr 10, 2017
Everyone knows that the game of billiards involves balls careening off the sides of a pool table - but few people may know that the same principle applies to fusion reactions. How charged particles like electrons and atomic nuclei that make up plasma interact with the walls of doughnut-shaped devices known as tokamaks helps determine how efficiently fusion reactions occur. Specifically, in ... read more

Related Links
National Institutes of Natural Sciences
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
U.S. emissions generally lower last year

World Bank urges more investment for developing global electricity

US states begin legal action on Trump energy delay

Program to be axed saves energy in LA buildings

ENERGY TECH
Clarifying the mechanism for suppressing turbulence through ion mass

Bright future for self-charging batteries

A more than 100% quantum step toward producing hydrogen fuel

Electrochemical performance of lithium-ion capacitors

ENERGY TECH
Norwegian company envisions wind energy role for oil production

Oklahoma to end tax credits for wind energy

German power company examining new wind energy options.

Canada sees emerging role for wind energy

ENERGY TECH
Solar cell design with over 50 percent energy-conversion efficiency

Indian Space Agency Comes Up With an App Indicating Solar Power Potential

Ancala and Anesco deploy large scale battery at UK solar farm

Light can improve perovskite solar cell performance

ENERGY TECH
Court deals setback to South Africa's nuclear ambitions

Andra continues Areva contract to operate its Aube Surface Disposal Facility

The critical importance of Predictive Power when building NPPs

AREVA NP Signs Contract for Outage Services at Farley Nuclear Generating Station

ENERGY TECH
Caterpillar found to eat shopping bags, suggesting biodegradable solution to plastic pollution

The Very Hungry Caterpillar joins fight against plastic pollution

Photosynthesis in the dark Unraveling the mystery of algae evolution

Finding best combination for biofuel corn, soil protection

ENERGY TECH
From abundant hydrocarbons to rare spin liquids

West Virginia groundwater not affected by fracking, but surface water is

A first-ever for Poland in the way of U.S. natural gas

Merger paid off, energy services firm TechnipFMC says

ENERGY TECH
US may stay in Paris climate accord, with caveats

US may stay in Paris climate accord, with caveats

UNEP chief confident US will not ditch Paris climate deal

Indian minister ridiculed as bizarre drought plot backfires




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement