Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















ENERGY TECH
Building a better microbial fuel cell - using paper
by Staff Writers
Rochester NY (SPX) Feb 07, 2017


A schematic illustration of a microbial fuel cell using a paper electrode coated with carbon paste. Image courtesy Michael Osadciw/University of Rochester.

The concept behind microbial fuel cells, which rely on bacteria to generate an electrical current, is more than a century old. But turning that concept into a usable tool has been a long process. Microbial fuel cells, or MFCs, are more promising today than ever, but before their adoption can become widespread, they need to be both cheaper and more efficient.

Researchers at the University of Rochester have made significant progress toward those ends. In a fuel cell that relies on bacteria found in wastewater, Kara Bren, a professor of chemistry, and Peter Lamberg, a postdoctoral fellow, have developed an electrode using a common household material: paper.

Until now, most electrodes used in wastewater have consisted of metal (which rapidly corrodes) or carbon felt. While the latter is the less expensive alternative, carbon felt is porous and prone to clogging.

Their solution was to replace the carbon felt with paper coated with carbon paste, which is a simple mixture of graphite and mineral oil. The carbon paste-paper electrode is not only cost-effective and easy to prepare; it also outperforms carbon felt.

"The paper electrode has more than twice the current density than the felt model," says Bren.

Their findings have been published in ACS Energy Letters.

Carbon paste is an essential ingredient due to its role in attracting electrons emitted by the bacteria. The specific bacterium used in Bren's project was Shewanella oneidensis MR-1, which consumes toxic heavy metal ions in the wastewater and ejects electrons. Those electrons are attracted to the carbon coating on the positive electrode--the anode. From there, they flow to the platinum cathode, which needs electrons to carry out its own electrochemical reactions.

In making their electrode, Bren and Lamberg created a layered sandwich of paper, carbon paste, a conducting polymer, and a film of the bacteria. This easily constructed electrode, surprisingly, had an average output of the circuit of 2.24 A m-2 (amps per unit area), compared to 0.94 A m-2 with the felt anode.

"We've come up with an electrode that's simple, inexpensive, and more efficient," says Lamberg. "As a result, it will be easy to modify it for further study and applications in the future."


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
University of Rochester
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Researchers flip script for Li-Ion electrolytes to simulate better batteries
Oak Ridge TN (SPX) Feb 03, 2017
Ever since Italian physicist Alessandro Volta invented the first battery out of a stack of copper and zinc disks separated by moistened cardboard, scientists have been searching for better battery materials. Lithium-ion batteries, which are lighter, longer-lasting, and functional under a wider range of temperatures than standard batteries, power everything from cell phones to aircraft carriers t ... read more


ENERGY TECH
Republican ex-top diplomats propose a carbon tax

Climate change may overload US electrical grid: study

Action is needed to make stagnant CO2 emissions fall

Nordic countries are bringing about an energy transition worth copying

ENERGY TECH
Building a better microbial fuel cell - using paper

Researchers flip script for Li-Ion electrolytes to simulate better batteries

Toward all-solid lithium batteries

Scientists take the first step toward creating efficient electrolyte-free batteries

ENERGY TECH
Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

Russia's nuclear giant pushes into wind energy

The power of wind energy and how to use it

Largest US offshore wind farm gets green light

ENERGY TECH
EU to phase out China solar panel duties

NREL research pinpoints promise of polycrystalline perovskites

Material can turn sunlight, heat and movement into electricity

NRDC: States should lead low-carbon economy

ENERGY TECH
Iran imports 149 tonnes of uranium from Russia: atomic chief

France's Areva picks up Japanese investors

Three new uranium minerals from Utah

Russia 'ready' to entirely fund Hungary nuclear plant

ENERGY TECH
A better way to farm algae

DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

Cathay Pacific to cut emissions with switch to biofuel

Populus dataset holds promise for biofuels, materials, metabolites

ENERGY TECH
U.S. exploration and production activity rising

US authorities clear pathway for Dakota pipeline

U.S. supply levels drag on oil prices

Some OPEC members bucking trend

ENERGY TECH
The ancient Indus civilization's adaptation to climate change

EU ahead of the curve on climate fight

Land-use change possibly produces more carbon dioxide than assumed so far

Role of biosphere counteracting climate change may be underestimated




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement