Subscribe to our free daily newsletters
  Energy News  

Subscribe to our free daily newsletters

Advancing next-generation Stable, safe, smart, sustainable batteries
by Staff Writers
Beijing, China (SPX) May 22, 2017

This image shows (a) Li-S, (b) room-temperature Na-S, (c) Li-organic, (d) organic-based redox-flow, and (e) Li-air batteries. Credit Science China Press

Next-generation rechargeable batteries are promising candidates for state-of-the-art lithium-ion batteries owing to their high energy density and preferred cost efficiency. For instance, Lithium-sulfur batteries, which are featured by their theoretically 10 times higher capacity and 5 times higher energy density, are reviving in both the academic and the industry. Shu Lei Chou and colleagues from the Institute for Superconducting and electronic materials, University of Wollongong, presented a review article and proposed a new concept of 4S (stable, safe, smart, sustainable) batteries.

They reviewed the latest development of functional membrane separators in liquid-electrolyte next-generation batteries and based on which they reported the four important criteria for guiding the advancement of novel battery systems. This work, entitled "Functional membrane separators for next-generation high-energy rechargeable batteries", was recently published in National Science Review.

Compared to conventional lithium-ion batteries capable of thousands of cycles, next-generation batteries are plagued by the poor cycling behavior, which is normally caused by the active material loss and the electrode degradation. Functional membrane separators provide an effective approach to extend the cycling stability of several important battery systems.

As can be seen from Figure 2, this work breaks the boundaries of five types of next-generation batteries, i.e., Li-S, room-temperature Na-, Li-organic, organic-based redox-flow and Li-air batteries. Ion-selective materials are applied as the separator to retard the unwanted shuttling of some specific species, e.g., polysulfide diffusion in Li-S batteries.

The applied functional membrane materials are Nafion (protonated, lithiated or sodiated), polymer of intrinsic microporosity (PIM), polyurethane (PU), metal organic frameworks (MOF), graphene oxide and lithium superionic conductor (LISICON). All these materials, whether polymers or inorganics, possess characteristic pore structures for the transport of the component ions but reject others, therefore prevent the side reactions and greatly enhance the cycling stability.

The safety performance of batteries closely relates to the life and property security of customers, hence is also a key criterion for battery development. Separators with important properties of high thermal/dimensional stability, good wetting performance and excellent thermal conductivity help improve the battery safety. With regard to the notorious lithium dendrite problem, separator approaches that create homogeneous environment for lithium deposition enhance the battery safety.

Besides, this article reviews the latest works of smart and sustainable separators. For instance, a voltage-responsive smart membrane system was constructed using a doped polypyrrole. When the applied electric field is zero, the membrane allows no ionic current.

Otherwise, when a certain reducing electric field is applied, the transport of positive ions is facilitated because the polymer is negatively charged and provides hopping pathways for cations, the pore size expanded and the polymer turns from hydrophobic to hydrophilic.

In addition, renewable polymers like cellulose are studied as promising candidates for fossil-based polyolefin materials to enable sustainable separators. The paper concludes that functional separators need further investigation and are expected to play a key role in advancing next-generation batteries towards the goal of 4S: stable, safe, smart, and sustainable.

Research paper: Functional membrane separators for next-generation high-energy rechargeable batteries

Self-healing tech charges up performance for silicon-containing battery anodes
Champaign IL (SPX) May 26, 2017
Researchers at the University of Illinois have found a way to apply self-healing technology to lithium-ion batteries to make them more reliable and last longer. The group developed a battery that uses a silicon nanoparticle composite material on the negatively charged side of the battery and a novel way to hold the composite together - a known problem with batteries that contain silicon. ... read more

Related Links
Science China Press
Powering The World in the 21st Century at

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

China further opens energy sector to private investment

Australia power grid leased to local-foreign consortium

Poland central to EU energy diversification strategy

Myanmar recovery linked to development of electrical grid

Advancing next-generation Stable, safe, smart, sustainable batteries

New approach to revolutionize the production of molecular hydrogen

Stretching the limits of elastic conductors

Photocatalyst makes hydrogen production 10 times more efficient

U.S. states taking up wind energy mantle

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

Scientists track porpoises to assess impact of offshore wind farms

Dutch open 'world's largest offshore' wind farm

Solar cells more efficient thanks to new material standing on edge

How to obtain highly crystalline organic-inorganic perovskite films for solar cells

Smart reform the key to unlock energy storage revolution

Keystone lowers energy costs with rooftop solar installation in New Jersey

Swiss vote for gradual nuclear phaseout, energy makeover

Why nuclear could become the next 'fossil' fuel

Hungary: AREVA NP awarded contract for safety IC modernization at Paks Nuclear Power Plant

India to build 10 domestic nuclear power reactors

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

A full life cycle assessment of second-generation biofuels

Triple play boosting value of renewable fuel could tip market in favor of biomass

Insight into enzyme's 3-D structure could cut biofuel costs

Michigan, a volatile market for gas prices, sees demand go up

Budget for shale-rich Oklahoma disappoints

U.S. oil production centers shift away from hurricane belt

New oil production starts offshore Brazil

Weathering of rocks a poor regulator of global temperatures

The forces that affect species' movements in a changing climate

Merkel vows to convince climate change 'doubters'

Fossil beetles suggest that LA climate has been relatively stable for 50,000 years

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement