Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
A turbulent solution to a growing problem
by Staff Writers
Kyoto, Japan (SPX) Oct 28, 2016


A schematic view of the DIII-D tokamak shows magnetic islands, along side computer simulations of a magnetic island and turbulence. Image courtesy DIII-D National Fusion Facility. For a larger version of this image please go here.

A recent experiment lead by University of California, Los Angeles (UCLA), researchers on the DIII-D tokamak suggests that plasma turbulence can prevent filamentary structures called magnetic islands from growing so large that they cool off the 100 million degree plasma.

This plasma needs to be as hot as possible so that individual nuclei collide with sufficient force to fuse together, thereby releasing energy.

The magnetic fields of the DIII-D tokamak (Figure 1) confine the plasma while it is heated, but the plasma can also affect this field and manipulate it into undesirable island shapes that cause the plasma to expel much if its energy into the surrounding walls.

Plasma turbulence, the wildly fluctuating pattern of particle motion, is a concern for fusion energy devices because it allows heat to escape the plasma. However, an even more serious concern is posed by naturally growing magnetic islands that tear the magnetic fabric of the plasma (Figure 1a).

The research team performed experiments at the DIII-D National Fusion Facility, operated by General Atomics in cooperation with the U.S. Department of Energy, to study the mutual effect of plasma turbulence and magnetic islands.

"Our team has discovered plasma turbulence gets weaker inside large magnetic islands," explained graduate student and leader of the experiments Laszlo Bardoczi of UCLA. "This leads to islands becoming even larger, which is bad for fusion.

However, turbulence can also prevent small islands from growing large. This suggests that we can avoid the growth of harmful magnetic islands by driving turbulence while islands are still small."

The researchers also conducted state-of-the-art computer simulations of the process (Figure 1b) that replicated the experimental findings. Demonstrating that simulation codes accurately calculate the plasma transport from such processes is vital to developing the ability to predict how fusion plasmas will behave in future experiments.

In future applications, plasma turbulence could be used to prevent small islands from growing and becoming harmful. This will potentially lead to improved control of the islands and therefore efficient operation of fusion devices like ITER, now being built in France as the world's largest tokamak by an unprecedented consortium of 35 nations including the United States.

Abstract: PI3.00003 Multi-field/-scale interactions of turbulence with neoclassical tearing modes and impact on plasma confinement in the DIII-D tokamak


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Scientists measure how ions bombard fusion device walls
Washington DC (SPX) Oct 28, 2016
For the first time, researchers at West Virginia University (WVU) have directly measured the complicated 3D patterns of flowing plasma as it strikes the walls of fusion and space propulsion devices. Understanding how this process occurs, and how scientists and engineers can prevent it, is critical to the development of the next generation of energy and space exploration technologies. ... read more


ENERGY TECH
Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

ENERGY TECH
Fixing deficits in boundary plasma models

First results of NSTX-U research operations

Breakthrough in Z-pinch implosion stability opens new path to fusion

A turbulent solution to a growing problem

ENERGY TECH
Cuomo announces major progress in offshore wind development

OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

Wind turbines killing more than just local birds

ENERGY TECH
CPP, SolarCity Deal Keeps Colton, Calif., Community Affordable and Sustainable

Schools in oil-rich Alberta to get solar panels

Renewable energy on the rise, IEA finds

Researchers discover ways to expand temperature stability range of solar cells

ENERGY TECH
Rosatom Considers No Restrictions on Commercial Supplies of Uranium to US

A new method to help solve the problem of nuclear waste

Greenland uranium mining opponents join government

Bulgaria to pay Russia 600 mn euros for dropped nuclear plant

ENERGY TECH
Turning biofuel waste into wealth in a single step

State partnerships can promote increased bio-energy production, reduce emissions

Biomass heating could get a 'green' boost with the help of fungi

Algae discovery offers potential for sustainable biofuels

ENERGY TECH
US, China hold second meeting on advancing space cooperation

China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

ENERGY TECH
Commonwealth brainstorms on climate change reversal

Atmospheric CO2 concentration at Syowa Station in Antarctica exceeds 400 ppm

What the ancient CO2 record may mean for future climate change

Atom-by-atom growth chart for shells helps decode past climate




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement