Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
A new way to store thermal energy
by Staff Writers
Boston MA (SPX) Nov 23, 2017


MIT postdoc, Grace Han, handles a new chemical composite that could provide an alternative to fuel by functioning as a kind of thermal battery.

In large parts of the developing world, people have abundant heat from the sun during the day, but most cooking takes place later in the evening when the sun is down, using fuel - such as wood, brush or dung - that is collected with significant time and effort.

Now, a new chemical composite developed by researchers at MIT could provide an alternative. It could be used to store heat from the sun or any other source during the day in a kind of thermal battery, and it could release the heat when needed, for example for cooking or heating after dark.

A common approach to thermal storage is to use what is known as a phase change material (PCM), where input heat melts the material and its phase change - from solid to liquid - stores energy. When the PCM is cooled back down below its melting point, it turns back into a solid, at which point the stored energy is released as heat.

There are many examples of these materials, including waxes or fatty acids used for low-temperature applications, and molten salts used at high temperatures. But all current PCMs require a great deal of insulation, and they pass through that phase change temperature uncontrollably, losing their stored heat relatively rapidly.

Instead, the new system uses molecular switches that change shape in response to light; when integrated into the PCM, the phase-change temperature of the hybrid material can be adjusted with light, allowing the thermal energy of the phase change to be maintained even well below the melting point of the original material.

The new findings, by MIT postdocs Grace Han and Huashan Li and Professor Jeffrey Grossman, are reported this week in the journal Nature Communications.

"The trouble with thermal energy is, it's hard to hold onto it," Grossman explains. So his team developed what are essentially add-ons for traditional phase change materials, or, "little molecules that undergo a structural change when light shines on them."

The trick was to find a way to integrate these molecules with conventional PCM materials to release the stored energy as heat, on demand. "There are so many applications where it would be useful to store thermal energy in a way lets you trigger it when needed," he says.

The researchers accomplished this by combining the fatty acids with an organic compound that responds to a pulse of light. With this arrangement, the light-sensitive component alters the thermal properties of the other component, which stores and releases its energy.

The hybrid material melts when heated, and after being exposed to ultraviolet light, it stays melted even when cooled back down. Next, when triggered by another pulse of light, the material resolidifies and gives back the thermal phase-change energy.

"By integrating a light-activated molecule into the traditional picture of latent heat, we add a new kind of control knob for properties such as melting, solidification, and supercooling," says Grossman, who is the Morton and Claire Goulder and Family Professor in Environmental Systems as well as professor of materials science and engineering.

The system could make use of any source of heat, not just solar, Han says.

"The availability of waste heat is widespread, from industrial processes, to solar heat, and even the heat coming out of vehicles, and it's usually just wasted." Harnessing some of that waste could provide a way of recycling that heat for useful applications.

"What we are doing technically," Han explains, "is installing a new energy barrier, so the stored heat cannot be released immediately."

In its chemically stored form, the energy can remain for long periods until the optical trigger is activated. In their initial small-scale lab versions, they showed the stored heat can remain stable for at least 10 hours, whereas a device of similar size storing heat directly would dissipate it within a few minutes. And "there's no fundamental reason why it can't be tuned to go higher," Han says.

In the initial proof-of-concept system "the temperature change or supercooling that we achieve for this thermal storage material can be up to 10 degrees C (18 F), and we hope we can go higher," Grossman says.

Already, in this version, "the energy density is quite significant, even though we're using a conventional phase-change material," Han says. The material can store about 200 joules per gram, which she says is "very good for any organic phase-change material." And already, "people have shown interest in using this for cooking in rural India," she says. Such systems could also be used for drying agricultural crops or for space heating.

"Our interest in this work was to show a proof of concept," Grossman says, "but we believe there is a lot of potential for using light-activated materials to hijack the thermal storage properties of phase change materials."

Research paper

ENERGY TECH
Fuel cell X-ray study details effects of temperature and moisture on performance
Berkeley CA (SPX) Nov 17, 2017
Like a well-tended greenhouse garden, a specialized type of hydrogen fuel cell - which shows promise as a clean, renewable next-generation power source for vehicles and other uses - requires precise temperature and moisture controls to be at its best. If the internal conditions are too dry or too wet, the fuel cell won't function well. But seeing inside a working fuel cell at the tiny scal ... read more

Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

ENERGY TECH
Reusing waste energy with 2-D electron gas

A new way to store thermal energy

New computational method provides optimized design of wind up toys

Renaissance of the iron-air battery

ENERGY TECH
New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

New York sets high bar for wind energy

Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

ENERGY TECH
Glass microparticles enhance solar cells efficiency

Expanding wavelength range for solar energy conversion

Artificial photosynthesis gets big boost from new catalyst

Recurrent Energy secures debt financing for 20 MW California solar project

ENERGY TECH
Lightbridge and AREVA NP Sign Agreements to Immediately Advance Fuel Development

UK made grave errors over Hinkley nuclear project: MPs

Belarus nuclear power plant stirs fears in Lithuania

Swiss nuclear plant finds defective tubes from France's Areva

ENERGY TECH
The water world of ancient photosynthetic organisms

Surrey develops new 'supercatalyst' to recycle carbon dioxide and methane

Coffee set to power London buses in green initiative

Sandia speeds transformation of biofuel waste into wealth

ENERGY TECH
OPEC anticipation gives oil bulls a chance to run

British energy lauded for momentum as economy falters

Russia's budget deficit indicative of growth

Ukraine says chief goal is to be energy independent

ENERGY TECH
Moroccans pray for rain as 'mercy from God'

Spain, Portugal struggle with extreme drought

Climate change encouraged 19th century migration to America

Spain, Portugal struggle with extreme drought




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement