Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
3-D paper-based microbial fuel cell operating under continuous flow condition
by Staff Writers
Ames IA (SPX) Jul 06, 2016


The device allows flow of the streams of Shewanella Oneidensis MR-1 (yellow) and the Potassium Ferricyanide (white) into the chambers. Proton exchange membrane is placed between the two chambers to separate the two liquids as well as allow the positively charged ions released in the biocatalytic breakdown of the anolyte to flow from the anode to the cathode. Image courtesy TECHNOLOGY. For a larger version of this image please go here.

A team of researchers from the Iowa State University in Ames, IA has demonstrated a proof-of-concept three-dimensional paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power. Their report appears in the forthcoming issue of the journal TECHNOLOGY.

The paper-based MFC runs for five days and shows the production of current as a result of biofilm formation on anode. The system produces 1.3 uW of power and 52.25 uA of current yielding a power density of approximately 25 W/m3 for this experiment. These results show that the paper-based microbial fuel cells can create power in an environmentally friendly mode without the use of any outside power.

"All power created in this device is useable because no electricity is needed to run the fluids through the device. This is crucial in the advancement of these devices and the expansion of their applications." says Nastaran Hashemi, PhD, Assistant Professor of Mechanical Engineering and the senior author of the paper.

The biofilm formation on the carbon cloth during the test provides further evidence that the current measured was the result of the bio-chemical reaction taking place. This is important because the biofilm plays a vital role in current production of a microbial fuel cell. Increased biofilm size and thickness ultimately leads to increased current production.

Individual bacterial cells metabolize electron-rich substances in a complex process involving many enzyme-catalyzed reactions. The electrons are then free to travel to the anode through one of many modes of electron transport. Electron transport is very complicated, and evidence suggests that it is unique to each type of bacteria.

For Shewanella Oneidensis MR-1, the most predominantly known ways of shuttling electrons from the individual bacteria cells to the anode are through direct contact, excreted soluble redox molecules, and biological nanowires. Of these, it is widely believed that excreted soluble redox molecules serving as extracellular electron shuttles makes up for as much as 70% of electron transfer mechanisms from individual bacterial cells to the electrode.

Moreover, it is shown that direct contact between individual S. Oneidensis MR-1 and the electrode has little impact on the current generation, supporting a mediated electron transfer mechanism.

Biofilm helps with the adsorption of the redox molecules to the electrode, which makes it important to have in high power density microbial fuel cells. There are not many studies on power production from paper-based microbial fuel cells running for few days.

Without enough time for biofilm to form, the reported current and power data would predominantly be associated with extracellular electron transfer, which represents does not fully represent electrical producing capabilities of microbial fuel cells. This device for the first time demonstrates the longer duration of use and ability to operate individually, a development that could help increase the number of situations where microbial fuel cells can be applied.

The Iowa State University team is currently exploring options to better control the voltage output and create constant current. Controlled environment tests will aid in the regulation of the systems output and yield more stable results. For optimal usability and decrease in cost, the team would also like to explore a device that would not need to use Nafion and Potassium Ferricyanide in its application. Additional co-authors of the paper are Niloofar Hashemi, Joshua Lackore, Farrokh Sharifi, Payton Goodrich, and Megan Winchell.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
World Scientific
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Building a better battery
College Station TX (SPX) Jul 03, 2016
Forget mousetraps - today's scientists will get the cheese if they manage to build a better battery. An international team led by Texas A and M University chemist Sarbajit Banerjee is one step closer, thanks to new research published in the journal Nature Communications that has the potential to create more efficient batteries by shedding light on the cause of one of their biggest problems - a " ... read more


ENERGY TECH
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

ENERGY TECH
3-D paper-based microbial fuel cell operating under continuous flow condition

Bangladesh coal plant threatens World Heritage mangrove: petition

Building a better battery

Activists denounce murder of Philippine anti-coal campaigner

ENERGY TECH
More wind power added to French grid

How China can ramp up wind power

Scotland investing more in offshore wind

Gamesa, Siemens join forces to create global wind power leader

ENERGY TECH
Discovery could dramatically boost efficiency of perovskite solar cells

Solar nano-grids light up homes and businesses in Kenya

Saved by the sun

Scientists explain unusual and effective features in perovskite

ENERGY TECH
Reactor fuels Russia bid for post-Fukushima atomic lead

Germany may wait 100 years for nuclear waste storage site

Russian floating nuclear power station undergoes mooring tests

Russia's REMIX Innovative Nuclear Fuel Enters First Field Trials

ENERGY TECH
From climate killer to fuels and polymers

Study shows trees with altered lignin are better for biofuels

Solar exposure energizes muddy microbes

Chemists find new way to recycle plastic waste into fuel

ENERGY TECH
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China launches new carrier rocket: state media

China's new launch center to get new viewing areas

ENERGY TECH
Britain's commitment firm on climate: secretary

Controlled Colorado River flooding released stored greenhouse gases

Future global warming could be even warmer

Brexit throws spanner into EU climate policy




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement