Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Energy News .




ENERGY TECH
3-D nanostructure could benefit gas storage
by Staff Writers
Houston TX (SPX) Jul 16, 2014


Rouzbeh Shahsavari, left, and Navid Sakhavand used computer simulations to predict the properties of a 3-D nanostructure made with boron nitride. Image courtesy Jeff Fitlow.

A three-dimensional porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit nanoelectronics, gas storage and composite materials that perform multiple functions, according to engineers at Rice University.

The researchers made this prediction by using computer simulations to create a series of 3-D prototypes with boron nitride, a chemical compound made of boron and nitrogen atoms. Their findings were published online July 14 in the Journal of Physical Chemistry C.

The 3-D prototypes fuse one-dimensional boron nitride nanotubes and two-dimensional sheets of boron nitride.

"We combined the tubes and sheets together to make them three-dimensional, thus offering more functionality," said Rouzbeh Shahsavari, assistant professor of civil and environmental engineering and of materials science and nanoengineering, who co-authored the paper with graduate student Navid Sakhavand.

In the 3-D nanostructure, the extremely thin sheets of boron nitride are stacked in parallel layers, with tube-shaped pillars of boron nitride between each layer to keep the sheets separated.

Shahsavari noted that in the one-dimensional and two-dimensional versions of boron nitride, there is always a bias in directional properties, either toward the tube axis or in-plane directions, which is not suitable for widespread 3-D use in technology and industrial applications.

For example, a one-dimensional boron nitride nanotube can be stretched about 20 percent of its length before it breaks, but the 3-D prototype of boron nitride can be stretched about 45 percent of its length without breaking.

When the typical one- or two-dimensional boron nitride materials are stretched in one direction, they tend to shrink in the other perpendicular directions. In the 3-D prototype, however, when the material stretches in the in-plane direction, it also stretches in perpendicular directions.

"Here, the junction between the tubes and sheets has a unique curve-like structure that contributes to this interesting phenomenon, known as the auxetic effect," Shahsavari said.

The thermal transport properties of the 3-D prototype are also advantageous, he said. The one-dimensional boron nitride tubes and two-dimensional sheets can carry heat very fast but only in one or two directions. The 3-D prototype carries heat relatively fast in all 3-D directions.

"This feature is ideal for applications that require materials or coating with the capability of extremely fast thermal diffusion to the environments. Examples include car engines or computer CPUs where a fast heat transfer to the environments is critical in proper functioning," Shahsavari said.

The 3-D boron nitride prototype has a very porous and lightweight structure. Each gram of this Swiss cheese-like structure has a surface area equivalent to three tennis courts. Such a high surface area lends itself to customized applications.

Shahsavari and Sakhavand predicted that the 3-D prototype of boron nitride would allow efficient gas storage and separation, for example, in vehicles that run on hydrogen cells.

Unlike graphene-based nanostructures, boron nitride is an electrically insulating material.

Thus, the 3-D boron nitride prototype has a potential to complement graphene-based nanoelectronics, including potential for the next generation of 3-D semiconductors and 3-D thermal transport devices that could be used in nanoscale calorimeters, microelectronic processes and macroscopic refrigerators.

The actual 3-D boron nitride prototype still has to be created in the lab, and numerous efforts are already underway. "Our computer simulations show what properties can be expected from these structures and what the key factors are that control their functionality," Shahsavari said.

.


Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Geothermal helping deliver clean energy future for California
Washington DC (SPX) Jul 11, 2014
The Geothermal Energy Association (GEA) will hold its fourth annual National Geothermal Summit Tuesday, August 5 and Wednesday, August 6 in Reno, Nevada. Renewable energy development in California is expected to be at the center of many conversations. The leading forum for western state policy discussions, the National Geothermal Summit will bring together policy leaders, utilities and ind ... read more


ENERGY TECH
Three Reforms to Protect Cap-and-Trade Policy

Blow for Australia government as carbon tax repeal fails

Upton wants policies in place to exploit energy leadership

Green planning needed to maintain city buildings

ENERGY TECH
Assessing energy balance of large-scale hydrogen production

Rutgers Chemists Develop Clean-Burning Hydrogen Fuel

Geothermal helping deliver clean energy future for California

Britain wins carbon capture funding from EU

ENERGY TECH
Dominion doing tests off Virginia coast for possible wind farm

New study uses blizzard to measure wind turbine airflow

Scotland investing $3.67 million to make wind development cost effective

London gives financial boost to rural renewable energy efforts

ENERGY TECH
Record levels of solar ultraviolet measured in South America

Trina Solar to Supply 200MW of PV Modules to Zonergy

Solar power for facility at Guantanamo Bay Naval Base

Solar energy gets a boost

ENERGY TECH
Sophisticated radiation detector designed for broad public use

Westinghouse Tech Addresses Nuclear Industry Concern

Japan city launches legal bid to halt reactor build

Westinghouse Extends New-plant Market with Specialized Seismic Option

ENERGY TECH
Hunger for vegetable oil means trouble for Africa's great apes

Microbe sniffer could point the way to next-gen bio-refining

The JBEI GT Collection: A New Resource for Advanced Biofuels Research

A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

ENERGY TECH
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

ENERGY TECH
Corals respond to climate change - fatter and more flexible

IPCC must consider alternate policy views

Putting a price tag on the 2 degree climate target

Kudzu can release soil carbon, accelerate global warming




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.