Energy News  
ENERGY TECH
Researchers at the GIST uncover the key to safer energy storage devices
by Staff Writers
Gwangju, South Korea (SPX) May 10, 2022

.

Modern energy storage devices, such as supercapacitors and batteries, have highly temperature-dependent performance. If a device get too hot, it become susceptible to 'thermal runaway.' Thermal runaway-or uncontrolled overheating-can ultimately result in explosions or fires.

Adopting a well-informed thermal management strategy is necessary for the stable and safe operation of devices. To do this, it is important to understand how certain thermal properties, like heat capacity (Cp), dynamically change during charging and discharging.

Recently, researchers from the Gwangju Institute of Science and Technology investigated the thermal properties of electric double-layer capacitors (EDLCs)-a type of supercapacitor having high power and long life-for a technical foundation in thermal measurement and revealed significant information.

"Using the 3? hot-wire method, we were able to measure the change in heat capacity of EDLCs in real-time in a microscopic electrode-electrolyte volume, which is an active site for the adsorption and desorption of ions," explains Prof. Jae Hun Seol, who led the study. The study was made available online on 5 February 2022 and will be published in Volume 188, Issue 122632 of International Journal of Heat and Mass Transfer on 1 June 2022.

The research team conducted experiments both in situ (under static conditions) and operando (during charging). They found that the temperatures of the positive and negative electrodes changed by 0.92% and 0.42% during charging, which corresponded to 9.14% and 3.91% reductions in their respective Cp. "According to thermodynamic theory, the ionic configuration entropy (a measure of randomness) of a system decreases during adsorption, i.e., charging. This also affects the free energy of the system. Together, this leads to a decrease in Cp," explains Prof. Seol.

The team also varied the concentration of the electrolyte, potassium hydroxide, to see how it affected EDLC performance. They found that the EDLC displayed maximum capacitance and Cp reduction when the electrolyte concentration was 8 M. They attributed this to variations in the degree of hydration of ions and their ionic mobility.

"An important aspect of this study is that charging and discharging also alters Cp of EDLCs," says Prof. Seol. "These findings will extend our understanding of the underlying thermal physics of EDLCs."

Indeed, these results can be considered a major step towards future effective thermal management strategies, which will create safer and more reliable energy storage devices.

Research Report:In situ and operando thermal characterization in aqueous electric double layer capacitors using the 3? hot-wire method


Related Links
Gwangju Institute of Science and Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Dual membrane offers hope for long-term energy storage
London, UK (SPX) May 04, 2022
A new approach to battery design could provide the key to low-cost, long-term energy storage, according to Imperial College London researchers. The team of engineers and chemists have created a polysulfide-air redox flow battery (PSA RFB) with not one, but two membranes. The dual membrane design overcomes the main problems with this type of large-scale battery, opening up its potential to store excess energy from, for example, renewable sources such as wind and solar. The research is published in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Canada stumbling in transition to low-carbon economy

EU needs to recycle more to hit green energy goals: report

Paris climate targets feasible if nations keep vows

Lots of low- and no-cost ways to halt global warming

ENERGY TECH
Researchers at the GIST uncover the key to safer energy storage devices

MIT expands research collaboration with Commonwealth Fusion Systems

Dual membrane offers hope for long-term energy storage

Using excess heat to improve electrolyzers and fuel cells

ENERGY TECH
Transport drones for offshore wind farms

Lack of marshaling ports hindering offshore wind industry

Favourable breezes boost Spain's wind power sector

Brazil to hold first offshore wind tender by October: official

ENERGY TECH
Scientists create reliable and renewable biological photovoltaic cell

Towards more efficient, non-toxic, and flexible thin-film solar cells

Citizen science for the advancement of solar energy

Renewable energy to grow to new record in 2022: IEA

ENERGY TECH
Framatome acquires EFINOR group Energy and Defense subsidiaries

Framatome selected to support component modernizations at Forsmark Nuclear Power Plant

Framatome announces launch of Framatome Bulgaria to support long-term services contract

Philippines could revive nuclear plant if Marcos wins presidency

ENERGY TECH
Ultrathin fuel cell uses the body's own sugar to generate electricity

Mystery solved about active phase in catalytic CO2 reduction to methanol

Using human energy to heat buildings will pay off

Dung power: India taps new energy cash cow

ENERGY TECH
New UAE president meets Macron, Johnson as world leaders stream in

Qatar emir visits Iran as nuclear talks falter

NREL scientists advance renewable hydrogen production method

Engineering piezoelectricity and strain sensitivity in CdS

ENERGY TECH
Even chance world will breach 1.5C warming within 5 years: UN

Thousands sick as latest severe sandstorm sweeps across Iraq

Horn of Africa drought drives 20 million towards hunger

Worst drought in decades devastates Ethiopia's nomads









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.