Energy News  
ENERGY TECH
Detection of atomic scale structure of Cooper-pairs in a high-TC superconductor
by Staff Writers
Seoul, South Korea (SPX) Apr 20, 2016


Figure 1.A: Typical 35 nm X 35 nm topographic image T(r) at BiO termination layer of BSCCO (crystal "supermodulation" runs vertically). B: Typical g(E)=dI/dV(E=eV) differential tunnel conductance spectra of superconducting Bi2Sr2CaCu2O8. The maximum energy gap is determined from half the distance between peaks in each spectrum. C: Spatial arrangement of f'(r) (gapmap) for p~17% Bi2Sr2CaCu2O8 samples studied here in same 35 nm X 35 nm FOV as A. D: Magnitude of Fourier transform of c, |? ?(?)| (crosses are at q=(p/a0,0);(0,p /a0)). E: As typical26, a single in equivalent peak due to the crystal "supermodulation" is observed (blue arrow). F: Simultaneously measured magnitude of ?(q) and t (q) from d,e along the (1,1) direction. Their primary peaks coincide exactly. Image courtesy IBS. For a larger version of this image please go here.

The international scientific team reported the first ever observation of the atomic scale structure of Cooper-pairs in the superconductor Bi2Sr2CaCu2O8+x: a material belonging to the family of high-temperature (High-TC) superconductors bismuth strontium calcium copper oxide, or BSCCO. This detection is a breakthrough in the understanding of the ever elusive high-TC superconductivity phenomena.

Conventional superconductors are not a recent discovery; conversely, they have been in commercial use for a number of decades but the extreme temperatures required, less than -263oC, prove difficult to attain and maintain, as opposed to high-TC superconductors where more manageable temperatures of -196oC are required.

Superconductivity occurs under certain temperatures: electrons form pairs and suddenly the electrical resistance drops to zero and the magnetic field inside of the material is repelled.

In nature, there are examples of emergence of macroscopic quantum states - superfluidity, Bose-Einstein condensation for example- where bosonic particles (bosons) condense and form one macroscopic quantum entity.

Electrons which are fermions--not bosons--cannot condense into one entity. However, under extremely low temperatures fermions cleverly combine into pairs and act as if they are bosons; they condense into one state and form yet another kind of macroscopic quantum phase - superconductivity.

Overcoming severe difficulties
The international scientific team had to overcome difficulties in creating an extreme environment. The process of detecting electrons is incredibly intricate, even when using advanced modern scientific machinery.

Professor Jinho Lee, leader of the project, explains: "Even detecting electrons in atomic resolution using a scanning tunneling microscope (STM) requires extremely low temperatures, low vibrations and a vacuumed environment to prevent any decay in the tip of the microscope or the sample as well as to minimize any electrical noise.

Detecting pairs is exponentially more difficult since the normal metal tip can only detect electrons and is unable to probe electron pairs.

Naturally one needs to use a sharp, durable superconducting tip which is very challenging to make. Many researchers tried and failed. We solved this arduous problem by creating a superconducting tip in-situ using the same material as the sample.

Cooper pairs can be detected due to the Josephson effect between the superconducting tip and sample. By using this Scanning Josephson Tunneling Microscopy, we were able to directly measure Cooper-pairs in atomic resolution for the first time."

Tunneling through barriers and looking toward the future
The Josephson effect is directly linked to superconductivity. Two superconducting materials, separated by a very thin barrier, can overlap their wave functions and Cooper pairs can tunnel through the barrier: This is known as the Josephson effect. Using the Scanning Josephson Tunneling Microscope, the team detected, at an atomic scale, the Cooper-pair tunneling through the barrier between the superconducting materials.

The team's results, published in Nature, announced the world's first measurement of atomic scale structure of Cooper-pairs. The implications of this discovery might not reverberate for many years in commercial applications of superconductors, but there is no doubt that the team altered the future path of superconductor research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute for Basic Science
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Physicists gain new view of superconductor
Binghamton NY (SPX) Apr 18, 2016
An international team of physicists has directly observed some unique characteristics of a superconductor for the first time, according to a paper published Wednesday in the journal Nature. Michael Lawler, a theoretical physicist at Binghamton University, contributed to the research, which he considers a great achievement for the experimentalists on the team. The researchers use a very sma ... read more


ENERGY TECH
Economic development does mean a greater carbon footprint

Study shows best way to reduce energy consumption

US tech giants file brief in favor of Obama 'clean power' plan

Four killed at anti-China power plant protest in Bangladesh

ENERGY TECH
Physicists gain new view of superconductor

New magnetism research brings high-temp superconductivity applications closer

Physicists discover flaws in superconductor theory

Creation of Jupiter interior, a step towards room temp superconductivity

ENERGY TECH
Iowa puts faith in wind energy

Maryland praised for renewable energy efforts

Scotland generated most of its electricity in 2015 through renewables

RWE making bold moves in Scottish renewables

ENERGY TECH
Riddle of missing zinc oxide and solar cells solved.

PolyU develops solar cells with highest power conversion efficiency

Mistra to develop lightweight solar modules for vehicles

Making and saving money with solar

ENERGY TECH
France finalising UK nuclear plant deal: minister

Japan to dump tritium waste from Fukushima NPP

Nuclear plans in turmoil as French Minister admits serious doubts

Finnish nuclear power plant reactor shut down after radioactive leak

ENERGY TECH
Major advance in synthetic biochemistry holds promise for biofuels

Recyclable, sugar-derived foam as renewable alternative to polyurethanes

Enzyme leads scientists further down path to pumping oil from plants

Penn chemists lay groundwork for countless new, cleaner uses of methane

ENERGY TECH
Chinese scientists develop mammal embryos in space for first time

Re-entry capsule of SJ-10 lands in Northern China

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

ENERGY TECH
Top investors urge leaders to sign Paris climate accord

Volcanic eruptions triggered societal crises during 6th century

After Paris climate deal, now the hard part

Some 150 nations to attend UN climate signing: France's Royal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.