Energy News  
ENERGY TECH
Chemical engineers pack more energy in same space for reliable battery
by Staff Writers
College Park, MD (SPX) Jul 19, 2018

UMD researchers and partners have increased a rechargeable battery's capacity.

The success of electric car batteries depends on the miles that can be driven on a single charge, but the current crop of lithium-ion batteries are reaching their natural limit of how much charge can be packed into any given space, keeping drivers on a short tether.

Now, researchers at the University of Maryland (UMD), the U.S. Army Research Laboratory (ARL), and Argonne National Laboratory (ANL) have figured out how to increase a rechargeable battery's capacity by using aggressive electrodes and then stabilizing these potentially dangerous electrode materials with a highly-fluorinated electrolyte.

A peer-reviewed paper based on the research was published July 16 in the journal Nature Nanotechnology.

"We have created a fluorine-based electrolyte to enable a lithium-metal anode, which is known to be notoriously unstable, and demonstrated a battery that lasts up to a thousand cycles with high capacity," said co-first authors Xiulin Fan and Long Chen, postdoctoral researchers at UMD's A. James Clark School of Engineering.

The new batteries can thus charge and discharge many times over without losing the ability to provide a reliable and high quality stream of energy. Even after a thousand charge cycles, the fluorine enhanced electrolytes ensured 93% of battery capacity, which the authors call "unprecedented." This means that a car running on this technology would reliably drive the same number of miles for many years.

"The cycle lives they achieved with the given electrode materials and operation voltage windows sound 'unprecedented.' This work is a [sic] great progress forward in the battery field in the direction of increasing the energy density, although further tuning might be needed to meet various standards for commercialization," said Jang Wook Choi, an associate professor in chemical and biological engineering at Seoul National University in South Korea. Choi was not involved with the research.

The team demonstrated the batteries in coin-cell shape like a watch battery for testing and is working with industry partners to use the electrolytes for a high voltage battery.

These aggressive materials, such as the lithium-metal anode and nickel and high-voltage cathode materials, are called such because they react strongly with other material, meaning that they can hold a lot of energy but also tend to "eat up" any other elements they're partnered with, rendering them unusable.

Chunsheng Wang, professor in the Clark School's Department of Chemical and Biochemical Engineering, has collaborated with Kang Xu at ARL and Khalil Amine at ANL on these new electrolyte materials for batteries.

Since each element on the periodic table has a different arrangement of electrons, Wang studies how each permutation of chemical structure can be an advantage or disadvantage in a battery. He and Xu also head up an industry-university-government collaborative effort called the Center for Research in Extreme Batteries, which aims to unite companies that need batteries for unusual uses with the researchers who can invent them.

"The aim of the research was to overcome the capacity limitation that lithium-ion batteries experience. We identified that fluorine is the key ingredient that ensures these aggressive chemistries behave reversibly to yield long battery life. An additional merit of fluorine is that it makes the usually combustible electrolytes completely unable to catch on fire," said Wang.

The team captured video of several battery cells catching on fire in instants, but the fluorine battery was impervious.

The high population of fluorine-containing species in the interphases is the key to making the material work, even though results have varied for different researchers in the past regarding the fluorination.

"You can find evidences from literature that either support or disapprove fluorine as good ingredient in interphases," said Xu, laboratory fellow and team leader of the research at ARL. "What we learned in this work is that, in most cases it is not just what chemical ingredients you have in the interphase, but how they are arranged and distributed."

Research paper


Related Links
University of Maryland
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Salt is key ingredient for cheaper and more efficient batteries
Nottingham UK (SPX) Jul 16, 2018
A new design of rechargeable battery, created using salt, could lead the way for greener energy. Researchers at the University of Nottingham Ningbo China (UNNC) have joined forces with a specialist group at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences on designs for the novel energy store which allows for greater power while also lasting longer than conventional batteries. Growing demand for electric vehicles and more sustainable forms of transport means finding n ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Global quadrupling of cooling appliances to 14 billion by 2050

Equinor buys short-term electricity trader

China reviewing low-carbon efforts

Path to zero emissions starts out easy, but gets steep

ENERGY TECH
Why gold-palladium alloys are better than palladium for hydrogen storage

Salt is key ingredient for cheaper and more efficient batteries

High-power electronics keep their cool with new heat-conducting crystals

Qubits as valves: Controlling quantum heat engines

ENERGY TECH
Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

India embarks on offshore wind energy effort

ENERGY TECH
How gold nanoparticles could improve solar energy storage

Latin America's largest solar park turns Mexican desert green

Longer contracts leverage the free fuel in solar power at little OM costs

Bacteria-powered solar cell converts light to energy, even under overcast skies

ENERGY TECH
Utmost Safety Ensured at Bangladesh's Nuke Plant

Can ultrashort electron flashes help harvest nuclear energy?

Fukushima nuclear plant operator resumes TV ads

Ultrashort electron flashes offer new way to harvest nuclear energy

ENERGY TECH
Carbon dioxide-to-methanol process improved by catalyst

Finding the right balance for catalysts in the hydrogen evolution reaction

Biorefineries will have only minimal effects on wood products and feedstocks markets

New 'promiscuous' enzyme helps turn plant waste into sustainable products

ENERGY TECH
Maersk Drilling gets North Sea vote of confidence

Oil prices face more pressure early Tuesday

Transocean delivers one-two rig contract punch

IEA frets over global spending on energy

ENERGY TECH
More Americans than ever say climate change is real, human-caused

Europe looking for climate strategies to 2050

Macron rallies sovereign wealth funds against climate change

In a warming world, could air conditioning make things worse?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.