Energy News  
ENERGY TECH
Big plans to save the planet depend on nanoscopic materials improving energy storage
by Staff Writers
Philadelphia PA (SPX) Nov 25, 2019

Nanomaterials will be key components for enabling wearable technology, according to an international team of researchers whose comprehensive report on the future of the field was published in science this week.

The challenge of building an energy future that preserves and improves the planet is a massive undertaking. But it all hinges on the charged particles moving through invisibly small materials.

Scientists and politicians have recognized the need for an urgent and substantial shift in the world's mechanisms of energy production and consumption in order to arrest its momentum toward environmental cataclysm. A course correction of this magnitude is certainly daunting, but a new report in the journal Science suggests that the technological path to achieving sustainability has already been paved, it's just a matter of choosing to follow it.

The report, authored by an international team of researchers, lays out how research in the field of nanomaterials for energy storage over the last two decades has enabled the big step that will be necessary to make use of sustainable energy sources.

"Most of the biggest problems facing the push for sustainability can all be tied back to the need for better energy storage," said Yury Gogotsi, PhD, Distinguished University and Bach professor at Drexel University's College of Engineering and lead author of the paper. "Whether it's a wider use of renewable energy sources, stabilizing the electric grid, managing the energy demands of our ubiquitous smart and connected technology or transitioning our transportation toward electricity - the question we face is how to improve the technology of storing and disbursing energy. After decades of research and development, the answer to that question may be offered by nanomaterials."

The authors present a comprehensive analysis on the state of energy storage research involving nanomaterials and suggest the direction that research and development must take for the technology to achieve mainstream viability.

The Jam
Most all plans for energy sustainability - from the Green New Deal to the Paris Agreement, to the various regional carbon emissions policies - assert the need to reign in energy consumption while also tapping into new renewable sources, like solar and wind power. The bottleneck for both of these efforts is the need for better energy storage technology.

The problem with integrating renewable resources into our energy grid is that it's difficult to manage energy supply and demand given the unpredictable nature of...nature. So, massive energy storage devices are necessary to accommodate all the energy that is generated when the sun is shining and the wind is blowing and then be able to disburse it quickly during high energy-use periods.

"The better we become at harvesting and storing energy, the more we'll be able to use renewable energy sources that are intermittent in nature," Gogotsi said. "Batteries are like the farmer's silo - if it's not large enough and constructed in a way that will preserve the crops, then it might be difficult to get through a long winter. In the energy industry right now, you might say we're still trying to build the right silo for our harvest - and that's where nanomaterials can help."

The Fix
Unstopping the energy-storage logjam has been a concerted goal for scientists who apply engineering principles to creating and manipulating materials at the atomic level. Their efforts in the last decade alone, which were highlighted in the report, have already improved the batteries that power smartphones, laptops and electric cars.

"Many of our greatest achievements in energy storage in recent years are thanks to the integration of nanomaterials," Gogotsi said. "Lithium-ion batteries already use carbon nanotubes as conductive additives in battery electrodes to make them charge faster and last longer. And an increasing number of batteries use nano-silicon particles in their anodes for increasing the amount of energy stored.

Introduction of nanomaterials is a gradual process and we will see more and more nanoscale materials inside the batteries in the future."

Battery design, for a long time, has been based primarily on finding progressively better energy materials and combining them to store more electrons. But, more recently, technological developments have allowed scientists to design the materials of energy storage devices to better serve these transmission and storage functions.

This process, called nanostructuring, introduces particles, tubes, flakes and stacks of nanoscale materials as the new components of batteries, capacitors and supercapacitors. Their shape and atomic structure can speed the flow of electrons - the heartbeat of electrical energy. And their ample surface area provides more resting places for the charged particles.

The effectiveness of nanomaterials has even allowed scientists to rethink the basic design of batteries themselves. With metallically conducting nanostructured materials ensuring that electrons can freely flow during charge and discharge, batteries can lose a good bit of weight and size by eliminating metal foil current collectors that are necessary in conventional batteries. As a result, their form is no longer a limiting factor for the devices they're powering.

Batteries are getting smaller, charging faster, lasting longer and wearing out slowly - but they can also be massive, charge progressively, store huge amounts of energy for long periods of time and distribute it on-demand.

"It is a very exciting time to work in the area of nanoscale energy storage materials," said Ekaterina Pomerantseva, PhD, an associate professor in the College of Engineering and coauthor of the paper.

"We now have more nanoparticles available than ever - and with different compositions, shapes and well-known properties. These nanoparticles are just like Lego blocks, and they need to be put together in a smart way to produce an innovative structure with performance superior of any current energy storage device. What makes this task even more captivating is the fact that unlike Legos, it is not always clear how different nanoparticles can be combined to create stable architectures. And as these desired nanoscale architectures become more and more advanced, this task becomes more and more challenging, triggering the critical thinking and creativity of scientists."

The Future
Gogotsi and his coauthors suggest that capitalizing on the promise of nanomaterials will require some manufacturing processes to be updated and continued research on how to ensure the materials' stability as their size is scaled up.

"The cost of nanomaterials compared to conventional materials is a major obstacle, and low-cost and large-scale manufacturing techniques are needed," Gogotsi said. "But this has already been accomplished for carbon nanotubes with hundreds of tons manufacturing for needs of battery industry in China. Preprocessing the nanomaterials in this way would allow the use of current battery manufacturing equipment."

They also note that the use of nanomaterials would eliminate the need for certain toxic materials that have been key components in batteries. But they also suggest establishing environmental standards for future development of nanomaterials.

"Whenever scientists consider new materials for energy storage, they should always take into account toxicity to humans and environment, also in case of accidental fire, incineration or dumping into waste," Gogotsi said.

What this all means, according to the authors, is that nanotechnology is making energy storage versatile enough to evolve with the shift in energy sourcing that forward-looking policies are calling for.

Research paper


Related Links
Drexel University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
HKU team invents Direct Thermal Charging Cell for converting waste heat to electricity
Hong Kong (SPX) Nov 19, 2019
Dr Tony Shien-Ping Feng of the Department of Mechanical Engineering at the University of Hong Kong (HKU) and his team invented a Direct Thermal Charging Cell (DTCC) which can effectively convert heat to electricity, creating a huge potential to reduce greenhouse effects by capturing exhaust heat and cutting down primary energy wastage. Low grade heat is abundantly available in industrial processes (80 to 150C), as well as in the environment, living things, solar-thermal (50 to 60C) and geothermal ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Renewables could cut power generation health impact by 80 percent

Modeling Every Building in America Starts with Chattanooga

EU bank to stop funding fossil fuels in 'landmark decision'

Energy giants face 35% output cut to hit Paris climate goals: watchdog

ENERGY TECH
Researchers visualize bacteria motor in first step toward human-produced electrical energy

HKU team invents Direct Thermal Charging Cell for converting waste heat to electricity

New material breaks world record turning heat into electricity

Using mountains for long-term energy storage

ENERGY TECH
Global winds reverse decades of slowing and pick up speed

Superconducting wind turbine chalks up first test success

Breaking down controls to better control wind energy systems

Mainstream Renewable closes $580M wind and solar financing deal in Chile

ENERGY TECH
New hybrid device can both capture and store solar energy

Canadian Solar achieves commercial operation on 53.4 mwp project in Japan

JA Solar supplies 134MW of high-efficiency PERC Double-glass Modules for solar plants in Jordan

NextEra newest solar plant now powering customers in South Carolina

ENERGY TECH
Framatome implements new maintenance technique on reactor component underwater

Czechs plan to build new nuclear unit by 2036

France's EDF cuts nuclear output forecast after quake

Deep learning expands study of nuclear waste remediation

ENERGY TECH
Researchers design an improved pathway to carbon-neutral plastics

France reverse palm oil tax break after outcry

France's Total faces outcry after winning back palm oil tax break

Scientists create 'artificial leaf' that turns carbon into fuel

ENERGY TECH
Britain's art world turns its back on oil cash

Lincoln Carrier Strike Group finishes scheduled transit into Persian Gulf

Iraqi protesters shut roads to ports, oil fields

US aircraft carrier transits Strait of Hormuz

ENERGY TECH
Climate protesters block Geneva's private jet terminal

Drought-hit Zimbabwe to transfer thousands of animals

New Zealand makes 'zero carbon' target law

Xi, Macron unite on climate after US withdraws from Paris pact









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.