. Energy News .




.
ENERGY TECH
At Small Scales, Tug-of-War Between Electrons Can Lead to Magnetism Under Surprising Circumstances
by Staff Writers
Buffalo NY (SPX) Jul 01, 2011

Theoretical physicist Igor Zutic and colleagues hope to create a quantum dot that is magnetic.

At the smallest scales, magnetism may not work quite the way scientists expected, according to a recent paper in Physical Review Letters by Rafal Oszwaldowski and Igor Zutic of the University at Buffalo and Andre Petukhov of the South Dakota School of Mines and Technology.

The three physicists have proposed that it would be possible to create a quantum dot - a kind of nanoparticle - that is magnetic under surprising circumstances.

Magnetism is determined by a property all electrons possess: spin. Individual spins are akin to tiny bar magnets, which have north and south poles. Electrons can have an "up" or "down" spin, and a material is magnetic when most of its electrons have the same spin.

Mobile electrons can act as "magnetic messengers," using their own spin to align the spins of nearby atoms. If two mobile electrons with opposite spins are in an area, conventional wisdom says that their influences should cancel out, leaving a material without magnetic properties.

But the UB-South Dakota team has proposed that at very small scales, magnetism may be more nuanced than that. It is possible, the physicists say, to observe a peculiar form of magnetism in quantum dots whose mobile electrons have opposing spins.

In their Physical Review Letters article, the researchers describe a theoretical scenario involving a quantum dot that contains two free-floating, mobile electrons with opposite spins, along with manganese atoms fixed at precise locations within the quantum dot.

The quantum dot's mobile electrons act as "magnetic messengers," using their own spins to align the spins of nearby manganese atoms.

Under these circumstances, conventional thinking would predict a stalemate: Each mobile electron exerts an equal influence over spins of manganese atoms, so neither is able to "win."

Through complex calculations, however, Oszwaldowski, Zutic and Petukhov show that the quantum dot's two mobile electrons will actually influence the manganese spins differently.

That's because while one mobile electron prefers to stay in the middle of the quantum dot, the other prefers to locate further toward the edges. As a result, manganese atoms in different parts of the quantum dot receive different messages about which way to align their spins.

In the "tug-of-war" that ensues, the mobile electron that interacts more intensely with the manganese atoms "wins," aligning more spins and causing the quantum dot, as a whole, to be magnetic. (For a visual representation of this tug-of-war, see Figure 1.)

This prediction, if proven, could "completely alter the basic notions that we have about magnetic interactions," Zutic says.

"When you have two mobile electrons with opposite spins, the assumption is that there is a nice balance of up and down spins, and therefore, there is no magnetic message, or nothing that could be sent to align nearby manganese spins," he says. "But what we are saying is that it is actually a tug of war. The building blocks of magnetism are still mysterious and hold many surprises."

Scientists including UB Professor Athos Petrou, UB College of Arts and Sciences Dean Bruce McCombe and UB Vice President for Research Alexander Cartwright have demonstrated experimentally that in a quantum dot with just one mobile electron, the mobile electron will act as a magnetic messenger, robustly aligning the spins of adjacent manganese atoms.

Now, Petrou and his collaborators are interested in taking their research a step further and testing the tug-of-war prediction for two-electron quantum dots, Zutic says.

Zutic adds that learning more about magnetism is important as society continues to find novel uses for magnets, which could advance technologies including lasers, medical imaging devices and, importantly, computers.

He explains the promise of magnet- or spin-based computing technology - called "spintronics" - by contrasting it with conventional electronics. Modern, electronic gadgets record and read data as a blueprint of ones and zeros that are represented, in circuits, by the presence or absence of electrons. Processing information requires moving electrons, which consumes energy and produces heat.

Spintronic gadgets, in contrast, store and process data by exploiting electrons' "up" and "down" spins, which can stand for the ones and zeros devices read. Future energy-saving improvements in data processing could include devices that process information by "flipping" spin instead of shuttling electrons around.

Studying how magnetism works on a small scale is particularly important, Zutic says, because "we would like to pack more information into less space."

And, of course, unraveling the mysteries of magnetism is satisfying for other, simpler reasons.

"Magnets have been fascinating people for thousands of years," Zutic says. "Some of this fascination was not always related to how you can make a better compass or a better computer hard drive. It was just peculiar that you have materials that attract one another, and you wanted to know why."

Zutic's research on magnetism is funded by the Department of Energy, Office of Naval Research, Air Force Office of Scientific Research and the National Science Foundation.




Related Links
University at Buffalo
Powering The World in the 21st Century at Energy-Daily.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Plug Power to Provide Kroger With GenDrive Fuel Cell Solution
Latham NY (SPX) Jul 01, 2011
Plug Power has announced it has added Kroger to its growing list of GenDrive customers. Plug Power will supply 161 GenDrive fuel cells to Kroger's food distribution center in Compton, CA. The order includes 4 class-1 units for sit down counterbalanced trucks, 42 class-2 units for reach trucks and 115 class-3 units for pallet trucks. With this partnership, Kroger will power its fleet of ele ... read more


ENERGY TECH
US backs Lithuanian energy independence drive: Clinton

Groups Launch National EPA SmartWay Drayage Program

Japan begins power restrictions

Japan sweats out summer in shadow of nuclear crisis

ENERGY TECH
Anti-China demo in Vietnam despite clampdown

Plan for refilling strategic oil reserves?

Iraq, Iran sign gas pipeline and supply deal

Philippines tells China to be 'responsible'

ENERGY TECH
Wind power numbers down in Britain

Power-One Inverters Chosen to Power WindTronics

Wind farm inquiry balanced and reasonable

Sheringham Shoal signs up For WindManager wind farm management system

ENERGY TECH
High-Efficiency IDS Solar Inverter Technology Unveiled in North America

Race is on to site largest U.S. solar farm

Spanish Government Selects SolarReserve's Solar Thermal Project

Infineon Raceway Lights Up With Major Panasonic Solar Panel Installation

ENERGY TECH
Power company RWE wants compensation for nuclear opt-out

Experts: Nuclear waste planning vital

German parliament approves nuclear exit

Jellyfish halt British nuclear power station

ENERGY TECH
Wales wood pellet biomass effort advances

Salt-loving microbe provides new enzymes for the production of next-gen biofuels

Insight into plant behavior could aid quest for efficient biofuels

Europe accounts for 70 percent of Global Biodiesel Production

ENERGY TECH
China to launch new communication satellite

China's second moon orbiter Chang'e-2 goes to outer space

Building harmonious outer space to achieve inclusive development

China's Fengyun-3B satellite goes into official operation

ENERGY TECH
European research effort improves understanding of impacts of aerosols on climate

Culture influences people's response to climate change

Gene flow may help plants adapt to climate change

US group 'concerned' about climate science threats


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement