Energy News  
TECH SPACE
Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling
by Staff Writers
Washington DC (SPX) Oct 16, 2019

The entry probe of the Galileo mission to Jupiter entered the planet's atmosphere in 1995 in fiery fashion, generating enough heat to cause plasma reactions on its surface. The data relayed about the burning of its heat shield differed from the effects predicted in fluid dynamics models, and new work examines what might have caused such a discrepancy. Researchers report their findings from new fluid radiative dynamics models in this week's Physics of Fluids. This image shows the high temperature flowfield around Galileo spacecraft upon entry to Jupiter, with ray-tracing algorithm distribution visualized.

The entry probe of the Galileo mission to Jupiter entered the planet's atmosphere in 1995 in fiery fashion. As the probe descended from Mach 50 to Mach 1 and generated enough heat to cause plasma reactions on its surface, it relayed data about the burning of its heat shield that differed from the effects predicted in fluid dynamics models. New work examines what might have caused such a discrepancy.

Researchers at the Universidade de Lisboa and the University of Illinois at Urbana-Champaign report their findings from new fluid radiative dynamics models using data transmitted from the of Galileo's 30-second entry. The paper, published in Physics of Fluids, from AIP Publishing, employs new computational techniques developed in the nearly 25 years since the mission.

"Early simulations for the probe design were conducted in the 1980s," said Mario Lino da Silva, an author on the paper. "There are some things we can do in 2019, because we have the computational power, new devices, new theories and new data."

Galileo's probe entered Jupiter's gravity traveling 47.4 kilometers per second, making it one of the fastest man-made objects ever. The fireball caused by the descent warmed the carbon phenolic heat shield to temperatures hotter than the sun's surface.

Data from the probe revealed the rim of the heat shield burned significantly more than even today's models would predict, measured by what is called the recession rate.

"The fireball is a kind of soup where a lot of things happen at the same time," he said. "One problem with modeling is that there are many sources of uncertainty and only one observed parameter, the heat shield recession rate."

The group recalculated features of the hydrogen-helium mixture the probe passed through, such as viscosity, thermal conductivity and mass diffusion, and found the oft-cited Wilke/Blottner/Eucken transport model failed to accurately model interactions between hydrogen and helium molecules.

They found the radiative heating properties of hydrogen molecules played a significant role in the additional heating the probe's heat shield experienced.

"The built-in heat shield engineering margins actually saved the spacecraft," Lino da Silva said.

Lino da Silva hopes the work helps improve future spacecraft design, including upcoming projects to explore Neptune that will likely not reach their destinations until after he has retired.

"In a way, it's like building cathedrals or the pyramids," he said. "You don't get to see the work when it's finished."

Lino da Silva next looks to validate some of the simulated findings by reproducing similar conditions in a shock-tube facility tailored for reproducing high-speed flows.

Research Report: "Computational fluid radiative dynamics of the Galileo Jupiter entry"


Related Links
American Institute of Physics
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
SwRI, international team use deep learning to create virtual 'super instrument'
San Antonio TX (SPX) Oct 08, 2019
A study co-written by a Southwest Research Institute scientist describes a new algorithm that combines the capabilities of two spacecraft instruments, which could result in lower cost and higher efficiency space missions. The virtual "super instrument," is a computer algorithm that utilizes deep learning to analyze ultraviolet images of the Sun, taken by NASA's Solar Dynamics Observatory, and measure the energy that the Sun emits as ultraviolet light. "Deep learning is an emerging capability that ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
To save climate, tax carbon at $75 per ton: IMF

How to Harmonise Wildlife and Energy Manufacturing

Canada, if Trudeau wins, to hit net zero emissions by 2050: minister

Sixty-six countries vow carbon neutrality by 2050: UN

TECH SPACE
How to startup fusion devices every time

Controlling superconducting regions within an exotic metal

First fully rechargeable carbon dioxide battery

Scientists finally find superconductivity in place they have been looking for decades

TECH SPACE
Model helps choose wind farm locations, predicts output

Norway's Equinor, British SSE chosen for world's biggest offshore wind farm

Sparks fly as Germany's climate plan hits rural landscapes

Government vows action as German wind industry flags

TECH SPACE
MicroLink devices delivers solar arrays to Prismatic for PHASA-35

Electrode-fitted microscope points to better designed devices that make fuel from sunlight

Exide announces major solar partnership in Spain

Modified quantum dots capture more energy from light and lose less to heat

TECH SPACE
British experts in Iran to upgrade Arak reactor: embassy

Framatome installs new instrumentation and control system at Exelon's Calvert Cliffs plant

Framatome brings together nuclear operators of its FROG user group

TITAN-2 and Framatome-Siemens consortium sign contract for HANHIKIVI-1 NPP main I&C supply

TECH SPACE
Flexible biofuel cell that runs on sweat

Total loses bid for palm oil tax break

Converting CO2 to valuable resources with the help of nanoparticles

Finding microbial pillars of the bioenergy community

TECH SPACE
With Billions at Play, Russia and China move into African Oil while US sits on side-lines

Oil prices spike after Iranian tanker blast

Iran tanker hit by suspected missile strikes near Saudi port: owner

South Australia wants to be major supplier of certified green hydrogen

TECH SPACE
Using space systems for climate control

Double counting threatens integrity of Paris agreement

Mediterranean basin badly hit by climate change: study

German govt presses on with criticised climate law









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.