Energy News  
ENERGY TECH
Activating lattice oxygen in perovskite oxide to optimize fuel cell performance
by Staff Writers
Pohang, South Korea (SPX) Dec 20, 2021

A figure that explains the modulation of the stability and activity of the SOFC anode confirmed by the researchers in this study. As the level of cobalt increases, the hydrogen oxidation reaction (HOR) activity in the anode increases but at the same time, the lattice oxygen bonding increases which heightens the risk of deterioration of the material stability.

To optimize the performance of fuel cells, a golden ratio must be found. Recently, a Korean research team has uncovered that the performance of fuel cells varies depending on the Co-doping level. Finding the optimal ratio is anticipated to help maximize the performance of fuel cells in the future.

A research team led by Professor Jeong Woo Han and Ph.D. candidate Chaesung Lim (Department of Chemical Engineering) of POSTECH, in joint research with Professor Yan Chen and Dr. Huijun Chen of South China University of Technology, has confirmed that as the Co-doping level in the perovskite oxide thin film increases, the lattice oxygen is increasingly activated in the film.

Since electrical energy is generated as lattice oxygen - which makes up the thin film - is activated, controlling this can improve the performance of a solid oxide fuel cell (SOFC), which uses the thin film as an anode.

The SOFC consists of an oxygen ion electrolyte and cathode-anode on both sides. On the cathode side, oxygen ions are formed via oxygen reduction. These ions move to the anode via electrolytes and generate water and electricity by reacting with the hydrogen supplied at the anode.

The research team added cobalt of different levels to the perovskite oxide film model using the pulsed laser deposition (PLD) method. As Co-doping level increased, the lattice oxygen activity in the film also increased and improved the performance of the SOFC anode. However, when the Co-doping level exceeded 70%, the stability of the anode rapidly degraded, lowering its performance.

SOFC, which converts chemical energy into electrical energy without emitting harmful gases, can replace fossil fuels that emit pollutants as a by-product. This makes SOFC the optimal alternative for overcoming the climate crisis as it can be used as a source of energy for powerplants that emit lots of carbon.

However, there are many factors that affect the lattice oxygen activity of the SOFC anode, making it difficult to fine-tune it. In this study, Professor Han's research team has discovered a way to ultimately improve the performance of fuel cells by allowing the lattice oxygen activity to be modulated with the Co-doping level.

"The effect of cobalt-doping level on the performance of SOFC anodes was affirmed with both theory and experiments in this study," explained Professor Jeong Woo Han. "This signifies that the strategy to develop the best-performing SOFC has been confirmed."

This joint study was conducted with the support from the Nano Materials Technology Development Program funded by the National Research Foundation of Korea. The findings from were recently published in Advanced Science, an academic journal of the highest authority in the field of materials science.

Research Report: "Activating Lattice Oxygen in Perovskite Oxide by B-Site Cation Doping for Modulated Stability and Activity at Elevated Temperatures"


Related Links
Pohang University of Science and Technology (POSTECH)
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
A carbon-air battery as a next-generation energy storage system
Tokyo, Japan (SPX) Dec 20, 2021
One of the barriers to generating electricity from wind and solar energy is their intermittent nature. A promising alternative to accommodate the fluctuations in power output during unfavorable environmental conditions are hydrogen storage systems, which use hydrogen produced from water splitting to generate clean electricity. However, these systems suffer from poor efficiency and often need to be large in size to compensate for it. This, in turn, makes for complex thermal management and a lowered ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Human cost of China's green energy rush ahead of Winter Olympics

Wildlife concerns blunt Germany's green power efforts

Biden calls for carbon neutral federal government by 2050

30,000 UK homes still without power after storm

ENERGY TECH
Portuguese lithium, fuel of Europe's electric vehicle revolution?

Redrawing the lines: Growing inexpensive, high-quality iron-based superconductors

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance

A carbon-air battery as a next-generation energy storage system

ENERGY TECH
Share of German energy from renewables to fall in 2021

DLR starts cooperation with ENERCON

RWE ups renewables investment as end to coal looms

Green hydrogen from expanded wind power in China

ENERGY TECH
Perovskite solar cell with ultra-long stability

New device advances commercial viability of solar fuels

Human cost of China's green energy rush ahead of Winter Olympics

'Photosynthetic' algae can survive the dark

ENERGY TECH
EU eyes nuclear, gas as 'green' on sustainable energy list

Finnish nuclear reactor starts up 12 years behind schedule

Belgium will close all nuclear reactors by 2025

Framatome, DoE secure $150 million cooperative agreement to advance accident tolerant fuel

ENERGY TECH
Estonia's wood pellet industry stokes controversy

Study shows how waste can be converted into materials for advanced industries

A system that combines solar energy and a chemical reactor to get more from biomass has been designed

DARPA transitions synthetic biomanufacturing technologies to support national security objectives

ENERGY TECH
Israeli greens hail blow to UAE oil deal

Cargo ship captain convicted over Mauritius oil spill

Climate crisis puts oil in the crosshairs, but dependence persists

Nanodiamonds are key to efficient hydrogen purification

ENERGY TECH
Deforestation, climate change making outdoor work unsafe: study

More extreme weather hits US as Biden promises aid to tornado-hit Kentucky

Bleak outlook for drought-hit Iraqis: study

Russia vetoes UN resolution on climate change as global security threat









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.