![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Krasnoyarsk, Russia (SPX) May 21, 2018
A team from Siberian Federal University and Kirensky Institute of Physics (Siberian Department of the Russian Academy of Sciences) applied a new method to study nanoparticles made of cadmium telluride (CdTe). They used a peculiar feature of this compound: its interaction with light differs depending on the magnetic field. The results of the study were published in the Physics Letters A journal. The interaction of certain substances with electromagnetic radiation depends on the magnetic characteristics of the environment. In particular, the magnetic circular dichroism effect can play a role. When this phenomenon is present, the absorption of light with different circular polarizations differs if it moves along the direction of magnetization. Magnetization may be determined by the properties of the substance itself (in case of ferromagnetic materials) or by the influence of an external magnetic field. The physicists of Siberian Federal University are making structures from colloidal (suspended in medium, in this case, in water) quantum dots. "Due to the tiny size of these objects (quantum dots are about three nanometers in diameter) the final structures are also quite small," explains a co-author of this work Alexey Tsipotan. "After the experiments are over, and structures are formed, they need to be studied - for instance, using electron microscopy or light spectroscopy. However, in the case of electron microscopy first of all the object should be deposited on a surface, which may cause the structure to change." In the course of a search for the new method the scientists suggested using the magneto-optic effect to study the structures without making any additional modifications. The colloidal nanoparticles in question seemed to have the magnetic circular dichroism effect. Therefore, methods based on it could be used for studying the forming structures. Cadmium telluride particles don't possess magnetism themselves, and the effect is observed only under the influence of an external magnetic field. "The potential range of use of colloidal quantum dots is extremely wide," concluded Tsipotan. "Most notably, they are excellent luminophores - their quantum yield of luminescence is on the same level as in dyes, but they are more photostable, i.e. they don't fade away under the influence of sunlight. Due to this property they may be used as light-emitting elements of optical diodes. " Also, they may be used in solar cells for more efficient sunlight transformation. Another area of their potential application is biology where quantum dots may be used as markers. Moreover, Samsung has recently launched a TV set in which quantum dots are added to light-emitting diodes."
![]() ![]() Dutch firm ASML perfecting 'microchip shrink' for tech giants Veldhoven, Netherlands (AFP) May 13, 2018 They call it "the shrink" - it's the challenge of how to pack more circuits onto the microchips which power everything from our phones to our computers, even our coffee machines. And pushing the boundaries of this technology is Dutch company ASML, which since its foundation in 1984 has quietly become a world leader in the semiconductor business. "There is more power in your smartphone today than was used to put man on the moon," says ASML's chief operating officer Frederic Schneider-Maunoury, a ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |