Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Tweaking thermoelectric voltage across atomic-scale gold junction by mechanical force
by Staff Writers
Tokyo, Japan (SPX) Aug 28, 2017


Control of thermoelectric voltage (VT) and conductance (G) with the periodic variation of elongation of the contact (D). The elongations in (a) and (b) were 0.73 nm and 0.10 nm with temperature differences of 10 K and 4.4 K, respectively.

A voltage difference is created across a junction of two wires held at different temperatures. This phenomenon, called thermoelectric effect, has been widely studied and used in various applications such as thermoelectric power generators, thermoelectric refrigerators, and temperature measurement. When the cross section of the junction contact is reduced to a few atoms, quantum-mechanical effects or, specifically, quantum interferences among electrons affect the transport of electrons across the junction.

These interferences are strongly dependent on the structure, including minute defects, of the atomic-scale contact and surrounding material, which determine electrical properties such as conductance and thermoelectric voltage. So far, quantum interference effect in atomic-scale metal contacts has not found much application, because of the difficulty in precisely controlling atomic structures.

Akira Aiba, Manabu Kiguchi and their colleagues at Tokyo Tech experimentally demonstrated that the magnitude and sign of the thermoelectric voltage across atomic-scale gold junctions can be controlled by applying a mechanical strain to deform the contact minutely and accurately while the structure of the surrounding material remains unaffected.

Minute deformations were performed through bending of the junction's substrate by using a piezoelectric transducer and by maintaining a low-temperature environment so that the atoms do not gain sufficient kinetic energy to vibrate strongly and cause random deformations of the structure.

As the contact was elongated, the conductance decreased in a step-wise manner, and the thermoelectric voltage varied sharply with changes in sign. Remarkably, these changes were perfectly reversible: the electrical properties were restored to their initial values when the contact was compressed back to its initial structure.

A suitable range of elongation that causes a step-like change in conductance with a change in sign of the thermoelectric voltage was used to create a voltage switch, i.e., a device that switches voltage when elongated or compressed. Such a change of sign of thermoelectric voltage across atom-scale metal junctions was observed previously, but this is the first time that the sign change could be controlled predictably and reversibly. Interestingly, the voltage switch developed by these scientists was shown to work reliably over at least 20 cycles of elongation and compression.

Further, the scientists theoretically proved that the switching is caused by the change of quantum-interference states of electrons due to the mechanical modification of the structure of the contact. A theoretical model of the junction that the scientists constructed using density functional theory accurately predicted the changes of electrical properties with varying deformation.

This is the first report of successful manipulation of quantum interference of electrons in metal nanostructures through external mechanical force. The results of this study can have potential applications in thermopower generation, measurement techniques in materials science, and solid-state electronic devices.

Research paper

ENERGY TECH
Physicists find strange state of matter in superconducting crystal
Dresden, Germany (SPX) Aug 28, 2017
New research published this week shows a rare state of matter in which electrons in a superconducting crystal organize collectively. The findings lay the groundwork for answering one of the most compelling questions in physics: How do correlated electron systems work, and are they related to one another? The paper, Electronic in-plane symmetry breaking at field-tuned quantum criticality in ... read more

Related Links
Tokyo Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

Allowable 'carbon budget' most likely overestimated

Sparkling springs aid quest for underground heat energy sources

Google's 'moonshot' factory spins off geothermal unit

ENERGY TECH
PPPL physicist discovers that some plasma instabilities can extinguish themselves

Physicists find strange state of matter in superconducting crystal

No batteries required: Energy-harvesting yarns generate electricity

A new twist toward practical energy harvesting

ENERGY TECH
Saudi Arabia shortlists 25 bidders for major wind plant

First foundations set for Baltic Sea wind farm

Wind energy blows up storm of controversy in Mexico

U.S. extends wind energy taproots into Zambia

ENERGY TECH
Perovskite solar cells go single crystal

Shape-shifters soak up sunshine

More solar power thanks to titanium

Photosynthesis discovery could help design more efficient artificial solar cells

ENERGY TECH
Kazakhstan inaugurates IAEA-backed nuclear fuel bank

2018 start for Russia-backed nuclear plant work:

Fukushima operator faces $5 bn US suit over 2011 disaster

UAE nuclear programme edges toward 2018 launch

ENERGY TECH
Researchers identify cheaper, greener biofuels processing catalyst

How a bacterium can live on methanol

Cyborg bacteria outperform plants when turning sunlight into useful compounds

Stretchable biofuel cells extract energy from sweat to power wearable devices

ENERGY TECH
Oil and gas wells as a strong source of greenhouse gases

Harvey pushing gas prices up as another storm approaches east coast of U.S.

Russia's economy tripped up, but recovering

Oil prices down as US reels from Harvey

ENERGY TECH
Methane from tundra, ocean floor didn't spike during previous natural warming period

Research identifies new microbe with potential to help rebalance Earth's nitrogen cycle

Study gives first proof that the Earth has a natural thermostat

Incomplete drought recovery may be the new normal




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement