Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Confined nanoparticles improve hydrogen storage materials performance
by Staff Writers
Livermore CA (SPX) Feb 28, 2017


Hydrogenation forms a mixture of lithium amide and hydride (light blue) as an outer shell around a lithium nitride particle (dark blue) nanoconfined in carbon. Nanoconfinement suppresses all other intermediate phases to prevent interface formation, which has the effect of dramatically improving the hydrogen storage performance. Image courtesy Sandia National Laboratories.

Sometimes, you have to go small to win big. That is the approach a multilab, interdisciplinary team took in using nanoparticles and a novel nanoconfinement system to develop a method to change hydrogen storage properties.

This discovery could enable the creation of high-capacity hydrogen storage materials capable of quick refueling, improving the performance of emerging hydrogen fuel cell electric vehicles.

Sandia National Laboratories, Lawrence Livermore National Laboratory (LLNL), the National Institute of Standards and Technology and Mahidol University in Bangkok, Thailand, collaborated on the research, which was published Feb. 8 in the journal Advanced Materials Interfaces.

The work was funded by the Department of Energy's (DOE) Fuel Cell Technologies Office and the Boeing Co.

Accelerating the uptake and release of hydrogen
Hydrogen fuel cell vehicles are powered by an electrochemical reaction between hydrogen and oxygen inside a fuel cell. While oxygen is provided by air, the hydrogen must be stored separately on the vehicle. Current fuel cell electric vehicles store hydrogen as a high-pressure gas.

A solid material can act like a sponge for the absorption and release of hydrogen, in chemical terms hydrogenation and dehydrogenation. Thus using such a hydrogen storage material could increase how much hydrogen can be stored. The material must be able to store enough hydrogen for the vehicle to go at least 300 miles before refueling.

"There are two critical problems with existing sponges for hydrogen storage," said Sandia chemist Vitalie Stavila. "Most can't soak up enough hydrogen for cars. Also, the sponges don't release and absorb hydrogen fast enough, especially compared to the 5 minutes needed for fueling."

In this effort, Stavila explained, the interdisciplinary team of scientists worked closely on the synthesis, characterization and modeling to improve the properties of lithium nitride, a promising hydrogen storage sponge. The team also developed a fundamental understanding of why nanosizing improves the hydrogen storage properties of this material.

Confining the space
The idea came from Mahidol University graduate student Natchapol "Golf" Poonyayant, who approached Sandia with the idea of using nanoconfinement to enhance hydrogen storage reactions in nitrogen-containing compounds. Working with the Sandia researchers, Poonyayant, his adviser, Pasit Pakawatpanurut, and fellow Mahidol student Natee "Game" Angboonpong found that liquid ammonia could be used as a gentle and efficient solvent for introducing metals and nitrogen into the pockets of carbon nanoparticles, producing nanoconfined lithium nitride particles.

The new material that emerged from Poonyayant's idea showed some unusual and unexpected properties. First, the amount of lithium nitride in the carbon nanoparticle host was quite high for a nanoconfined system, about 40 percent. Second, the nanoconfined lithium nitride absorbed and released hydrogen more rapidly than the bulk material. Furthermore, once the lithium nitride had been hydrogenated, it also released hydrogen in only one step and much faster than the bulk system that took two steps.

"In other words, the chemical pathways for both hydrogen absorption and release in this hydrogen storage material were dramatically changed for the better," said Sandia chemist Lennie Klebanoff.

Understanding the puzzle
To better understand the mechanism responsible for this improvement, the Sandia scientists reached out to computational scientist Brandon Wood of LLNL, a leading expert in the theory of solid-state reactions. Wood and his LLNL colleagues Tae Wook Heo, Jonathan Lee and Keith Ray discovered that the reason for the unusual behavior was the energy associated with two material interfaces.

Since the lithium nitride nanoparticles are only 3 nanometers wide, even the smallest energetically unfavorable process is avoided in the hydrogen storage properties. For lithium nitride nanoparticles undergoing hydrogenation reactions, the avoidance of unfavorable intermediates - extra steps in the chemical process - increases efficiency.

Taking the path of least resistance, the material undergoes a single-step path to full hydrogenation. Similarly, once hydrogenated, the nanoparticles release hydrogen by the lowest energy pathway available, which in this case is direct hydrogen release back to lithium nitride.

"In this way, the nanointerfaces drive the hydrogen storage properties when the materials are made very small, for example with nanoconfinement," said Wood. "The purposeful control of nanointerfaces offers a new way to optimize hydrogen storage reaction chemistry."

The next step
According to the Sandia and LLNL researchers, the next step is to further understand how the dehydrogenated and hydrogenated phases of lithium nitride change at the nanoscale. This is a stiff challenge to the team, as it requires imaging different chemical phases within a particle that is only several nanometers wide.

The team will draw on the capabilities within the DOE's Hydrogen Storage Materials Advanced Research Consortium (HyMARC), led by Sandia and comprised additionally of scientists from LLNL and Lawrence Berkeley National Laboratory. The team plans to use spatially resolved synchrotron radiation from LBNL's Advanced Light Source to probe interface chemistry and structure.

In addition, since the nanoporous carbon host is "dead weight" from a hydrogen storage perspective, the team is examining ways to "lighten the load" and find carbon materials with more nanopockets for a given carbon mass.

"We are thrilled with this technical advance and excited to take on the work ahead," said Klebanoff. "But it's bittersweet. Golf, who inspired this work and conducted many of the syntheses, died tragically at the age of 25 during the writing of this paper. The world has lost a talented young man and we have lost a dear friend whom we miss. This work and its published account are dedicated to Golf and his family."

ENERGY TECH
Nano-sized hydrogen storage system increases efficiency
Livermore CA (SPX) Feb 28, 2017
Lawrence Livermore scientists have collaborated with an interdisciplinary team of researchers including colleagues from Sandia National Laboratories to develop an efficient hydrogen storage system that could be a boon for hydrogen powered vehicles. Hydrogen is an excellent energy carrier, but the development of lightweight solid-state materials for compact, low-pressure storage is a huge c ... read more

Related Links
Sandia National Laboratories
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
New Zealand lauded for renewables, but challenges remain

EU parliament backs draft carbon trading reforms

Taiwan lantern makers go green for festival of lights

Republican ex-top diplomats propose a carbon tax

ENERGY TECH
Space energy technology restored to make power stations more efficient

Confined nanoparticles improve hydrogen storage materials performance

New path suggested for nuclear fusion

Tweaking electrolyte makes better lithium-metal batteries

ENERGY TECH
Wind energy gaining traction, U.S. trade group says

French, Spanish companies set for more wind power off coast of France

Breakthrough research for testing and arranging vertical axis wind turbines

German company to store US wind energy in batteries in Texas

ENERGY TECH
King County Metro signs Urban Solar on for rare 10 year contract

DuPont Photovoltaic Solutions Introduces New Solamet

SOVENTIX developing solar parks of up to 140 megawatts in Alberta, Canada

meeco installed biggest solar energy plant in Zimbabwe

ENERGY TECH
EU approves Hungary's Kremlin-backed nuclear plant

Areva narrows losses in 2016

Researchers find new clues for nuclear waste cleanup

Next generation of nuclear robots will go where none have gone before

ENERGY TECH
Turning food waste into tires

New materials could turn water into the fuel of the future

Novel 3-D manufacturing leads to highly complex, bio-like materials

Tree growth model assists breeding for more wood

ENERGY TECH
U.S. rig counts increased in February

More oil progress offshore Senegal

Gas prices steady, but wild swings reported regionally

Oil prices face pressure over slowing China

ENERGY TECH
Study reveals the atmospheric footprint of global warming hiatus

Canada faces 'herculean shift' to meet climate targets

Bringing water to Kenya's drought-stricken wildlife

Trump team divided over Paris climate agreement




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement