Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Rice develops dual-surface graphene electrode to split water into hydrogen and oxygen
by Staff Writers
Houston TX (SPX) Aug 07, 2017


A two-sided electrocatalyst developed at Rice University splits water into hydrogen on one side and oxygen on the other. The hydrogen side seen in electron microscope images features platinum particles (the dark dots at right) evenly dispersed in laser-induced graphene (left). Credit Tour Group/Rice University

Rice University chemists have produced a catalyst based on laser-induced graphene that splits water into hydrogen on one side and oxygen on the other side. They said the inexpensive material may be a practical component in generating the hydrogen for use in future fuel cells.

The easily fabricated material developed by the Rice lab of chemist James Tour offers a robust and efficient way to store chemical energy. Tests showed the thin catalyst producing large bubbles of oxygen and hydrogen on either side simultaneously.

The process is the subject of a paper in the American Chemical Society's Applied Materials and Interfaces.

"Hydrogen is currently made by converting natural gas to a mixture of carbon dioxide and hydrogen gas," Tour said. "So for every two hydrogen molecules, a molecule of carbon dioxide is formed, making this traditional process a greenhouse-gas emitter.

"But if one splits water into hydrogen and oxygen, using a catalytic system and electricity generated from wind or solar energy, then the hydrogen afforded is entirely renewable," he said. "Once used in a fuel cell, it reverts back to water with no other emissions. And fuel cells are often twice as efficient as internal combustion engines, further saving energy."

The catalyst is another use for versatile laser-induced graphene (LIG), which Rice introduced in 2014. LIG is produced by treating the surface of a sheet of polyimide, an inexpensive plastic, with a laser. Rather than a flat sheet of hexagonal carbon atoms, LIG is a foam of graphene sheets with one edge attached to the underlying surface and chemically active edges exposed to the air.

LIG itself is inert, so turning it into a water splitter involves a few more steps. First, the lab impregnated the side of the plastic destined to pull hydrogen from water with platinum particles; then the lab used a laser to heat the surface and make LIG. The Rice material uses only a quarter of the platinum found in commercial catalysts, said Jibo Zhang, a Rice graduate student and lead author of the paper.

The other side, for oxygen evolution, was first turned into LIG and then enhanced with nickel and iron through electrochemical deposition. Both sides showed low onset potentials (the voltage needed to start a reaction) and strong performance over 1,000 cycles.

The lab came up with another variation: making the polyimide into an LIG catalyst with cobalt and phosphorus that could replace either the platinum or nickel-iron sides to produce hydrogen or oxygen. While the low-cost material benefits by eliminating expensive noble metals, it sacrifices some efficiency in hydrogen generation, Tour said.

When configured with cobalt-phosphorus for hydrogen evolution and nickel-iron for oxygen, the catalyst delivered a current density of 10 milliamps per square centimeter at 1.66 volts. It could be increased to 400 milliamps per square centimeter at 1.9 volts without degrading the material. The current density governs the rate of the chemical reaction.

Tour said enhanced LIG offers water-splitting performance that's comparable and often better than many current systems, with an advantage in its inherent separator between oxygen and hydrogen products. He noted it may find great value as a way to chemically store energy from remote solar or wind power plants that would otherwise be lost in transmission.

The material might also serve as the basis for efficient electrocatalysis platforms for carbon dioxide or oxygen reduction, he said.

Research paper

ENERGY TECH
Study reveals exactly how low-cost fuel cell catalysts work
Los Alamos NM (SPX) Aug 07, 2017
In order to reduce the cost of next-generation polymer electrolyte fuel cells for vehicles, researchers have been developing alternatives to the prohibitively expensive platinum and platinum-group metal (PGM) catalysts currently used in fuel cell electrodes. New work at Los Alamos and Oak Ridge national laboratories is resolving difficult fuel-cell performance questions, both in determining effi ... read more

Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

Allowable 'carbon budget' most likely overestimated

Sparkling springs aid quest for underground heat energy sources

Google's 'moonshot' factory spins off geothermal unit

ENERGY TECH
BAE Systems installing heat and power plant at Portsmouth, England

Metal clouds to protect fusion reactor walls from heat flux

How the electrodes of lithium-air batteries become passivated

Study reveals exactly how low-cost fuel cell catalysts work

ENERGY TECH
Vertical axis wind turbines can offer cheaper electricity for urban and suburban areas

Annual wind report confirms tech advancements, improved performance, low wind prices

U.S. wind power momentum up 40 percent from last year

Shale-rich Oklahoma to host mega-wind farm

ENERGY TECH
Solar glasses generate solar power

New method enhances broadband light absorption in solar cells

Lightweight catalyst for artificial photosynthesis

A new picture emerges on the origins of photosynthesis in a sun-loving bacteria

ENERGY TECH
The Roadmap for Increased Safety and Viability of Nuclear Power Plants

Areva signs MOX fuel fabrication contract with Japan

Construction of two nuclear power plants in US halted

Nuclear contaminates earnings of France's EDF

ENERGY TECH
Additive selectively converts CO2 to multicarbon fuels

New light-activated catalyst grabs CO2 to make ingredients for fuel

Biochar could clear the air in more ways than one

Algae cultivation technique could advance biofuels

ENERGY TECH
High demand means higher gasoline prices, report finds

Oil prices relatively even on wait-and-see Tuesday

United Arab Emirates, an OPEC member, eyes more oil production

Libyan oil production issue resolved

ENERGY TECH
Small odds of reaching 2 C climate goal: researchers

Could spraying particles into marine clouds help cool the planet

Al Gore: I've given up on climate 'catastrophe' Trump

Could a geoengineering cocktail control the climate




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement