Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
Research led by PPPL provides reassurance that heat flux will be manageable in ITER
by Staff Writers
Plainsboro NJ (SPX) Sep 27, 2017


illustration only

A major issue facing ITER, the international tokamak under construction in France that will be the first magnetic fusion device to produce net energy, is whether the crucial divertor plates that will exhaust waste heat from the device can withstand the high heat flux, or load, that will strike them.

Alarming projections extrapolated from existing tokamaks suggest that the heat flux could be so narrow and concentrated as to damage the tungsten divertor plates in the seven-story, 23,000 ton tokamak and require frequent and costly repairs. This flux could be comparable to the heat load experienced by spacecraft re-entering Earth's atmosphere.

New findings of an international team led by physicist C.S. Chang of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) paint a more positive picture. Results of the collaboration, which has spent two years simulating the heat flux, indicate that the width could be well within the capacity of the divertor plates to tolerate.

"This could be very good news for ITER," Chang said of the findings, published in August in the journal Nuclear Fusion. "This indicates that ITER can produce 10 times more power than it consumes, as planned, without damaging the divertor plates prematurely."

At ITER, spokesperson Laban Coblentz, said the simulations were of great interest and highly relevant to the ITER project. He said ITER would be keen to see experimental benchmarking, performed for example by the Joint European Torus (JET) at the Culham Centre for Fusion Energy in the United Kingdom, to strengthen confidence in the simulation results.

Chang's team used the highly sophisticated XGC1 plasma turbulence computer simulation code developed at PPPL to create the new estimate. The simulation projected a width of 6 millimeters for the heat flux in ITER when measured in a standardized way among tokamaks, far greater than the less-than 1 millimeter width projected through use of experimental data.

Deriving projections of narrow width from experimental data were researchers at major worldwide facilities. In the United States, these tokamaks were the National Spherical Torus Experiment before its upgrade at PPPL; the Alcator C-Mod facility at MIT, which ceased operations at the end of 2016; and the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego.

Widely different conditions
The discrepancy between the experimental projections and simulation predictions, said Chang, stems from the fact that conditions inside ITER will be too different from those in existing tokamaks for the empirical predictions to be valid. Key differences include the behavior of plasma particles within today's machines compared with the expected behavior of particles in ITER. For example, while ions contribute significantly to the heat width in the three U.S. machines, turbulent electrons will play a greater role in ITER, rendering extrapolations unreliable.

Chang's team used basic physics principles, rather than empirical projections based on the data from existing machines, to derive the simulated wider prediction. The team first tested whether the code could predict the heat flux width produced in experiments on the U.S. tokamaks, and found the predictions to be valid.

Researchers then used the code to project the width of the heat flux in an estimated model of ITER edge plasma. The simulation predicted the greater heat-flux width that will be sustainable within the current ITER design.

Supercomputers enabled simulation
Supercomputers made this simulation possible. Validating the code on the existing tokamaks and producing the findings took some 300 million core hours on Titan and Cori, two of the most powerful U.S. supercomputers, housed at the DOE's Oak Ridge Leadership Computing Facility and the National Energy Research Scientific Computing Center, respectively. A core hour is one processor, or core, running for one hour.

Research paper

ENERGY TECH
PPPL physicist discovers that some plasma instabilities can extinguish themselves
Plainsboro NJ (SPX) Aug 28, 2017
Physicist Fatima Ebrahimi at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has for the first time used advanced models to accurately simulate key characteristics of the cyclic behavior of edge-localized modes (ELMs), a particular type of plasma instability. The findings could help physicists more fully comprehend the behavior of plasma, the hot, charged g ... read more

Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
SLAC-led project will use AI to prevent or minimize electric grid failures

Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

ENERGY TECH
Stopping problem ice - by cracking it

Hybrid indium-lithium anodes provide fast interfacial ion transport

Corvus Energy wins contract to provide battery systems for hybrid fishing vessels

Graphene-wrapped nanocrystals make inroads towards next-gen fuel cells

ENERGY TECH
French energy company to build wind power sector in India

Finding better wind energy potential with the new European Wind Atlas

Last of the 67 turbines for a British wind farm installed

Kimberly-Clark next U.S. company to draw more on renewables

ENERGY TECH
Flexible semitransparent solar cells made from atomically thin sheet

Solar Power Lights Up Amazon Communities Fighting Dirty Energy

Green Bank Network totals over $29 Billion for clean energy projects around the World

International Trade Commission finds injury in solar industry dispute

ENERGY TECH
Russia floats out powerful nuclear icebreaker

UAE to open Arab Gulf's first nuclear reactor in 2018

Against rising headwinds, UK pushes ahead with nuclear projects

Russia's use and stockpiles of highly enriched uranium pose significant nuclear risks

ENERGY TECH
Researchers discover unique property of critical methane-producing enzyme

Illinois researchers develop gene circuit design strategy to advance synthetic biology

Green algae could hold clues for engineering faster-growing crops

Re-engineering biofuel-producing bacterial enzymes

ENERGY TECH
LNG could be the answer for ASEAN

No luck in finding new oil in Barents Sea

Kiir tells South Sudan police to work with UN

Crude oil prices up after Turkey threatens to close Kurdish pipeline

ENERGY TECH
Cost of climate disasters to reach half of US growth in a decade: report

Science denial not limited to political right

Canada Tory MP called out for referring to minister as 'climate Barbie'

US looks to work with Paris climate accord 'partners': Tillerson




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement