Subscribe free to our newsletters via your
  Energy News  




Subscribe free to our newsletters via your




















ENERGY TECH
New, long-lasting flow battery could run for more than a decade with minimum upkeep
by Staff Writers
Boston MA (SPX) Feb 10, 2017


Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar.

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new flow battery that stores energy in organic molecules dissolved in neutral pH water. This new chemistry allows for a non-toxic, non-corrosive battery with an exceptionally long lifetime and offers the potential to significantly decrease the costs of production.

The research, published in ACS Energy Letters, was led by Michael Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science.

Flow batteries store energy in liquid solutions in external tanks - the bigger the tanks, the more energy they store. Flow batteries are a promising storage solution for renewable, intermittent energy like wind and solar but today's flow batteries often suffer degraded energy storage capacity after many charge-discharge cycles, requiring periodic maintenance of the electrolyte to restore the capacity.

By modifying the structures of molecules used in the positive and negative electrolyte solutions, and making them water soluble, the Harvard team was able to engineer a battery that loses only one percent of its capacity per 1000 cycles.

"Lithium ion batteries don't even survive 1000 complete charge/discharge cycles," said Aziz.

"Because we were able to dissolve the electrolytes in neutral water, this is a long-lasting battery that you could put in your basement," said Gordon. "If it spilled on the floor, it wouldn't eat the concrete and since the medium is noncorrosive, you can use cheaper materials to build the components of the batteries, like the tanks and pumps."

This reduction of cost is important. The Department of Energy (DOE) has set a goal of building a battery that can store energy for less than $100 per kilowatt-hour, which would make stored wind and solar energy competitive to energy produced from traditional power plants.

"If you can get anywhere near this cost target then you change the world," said Aziz. "It becomes cost effective to put batteries in so many places. This research puts us one step closer to reaching that target."

"This work on aqueous soluble organic electrolytes is of high significance in pointing the way towards future batteries with vastly improved cycle life and considerably lower cost," said Imre Gyuk, Director of Energy Storage Research at the Office of Electricity of the DOE. "I expect that efficient, long duration flow batteries will become standard as part of the infrastructure of the electric grid."

The key to designing the battery was to first figure out why previous molecules were degrading so quickly in neutral solutions, said Eugene Beh, a postdoctoral fellow and first author of the paper. By first identifying how the molecule viologen in the negative electrolyte was decomposing, Beh was able to modify its molecular structure to make it more resilient.

Next, the team turned to ferrocene, a molecule well known for its electrochemical properties, for the positive electrolyte.

"Ferrocene is great for storing charge but is completely insoluble in water," said Beh. "It has been used in other batteries with organic solvents, which are flammable and expensive."

But by functionalizing ferrocene molecules in the same way as with the viologen, the team was able to turn an insoluble molecule into a highly soluble one that could also be cycled stably.

"Aqueous soluble ferrocenes represent a whole new class of molecules for flow batteries," said Aziz.

The neutral pH should be especially helpful in lowering the cost of the ion-selective membrane that separates the two sides of the battery. Most flow batteries today use expensive polymers that can withstand the aggressive chemistry inside the battery. They can account for up to one third of the total cost of the device. With essentially salt water on both sides of the membrane, expensive polymers can be replaced by cheap hydrocarbons.

This research was coauthored by Diana De Porcellinis, Rebecca Gracia, and Kay Xia. It was supported by the Office of Electricity Delivery and Energy Reliability of the DOE and by the DOE's Advanced Research Projects Agency-Energy.

With assistance from Harvard's Office of Technology Development (OTD), the researchers are working with several companies to scale up the technology for industrial applications and to optimize the interactions between the membrane and the electrolyte. Harvard OTD has filed a portfolio of pending patents on innovations in flow battery technology.


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
Harvard School of Engineering and Applied Sciences
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
How to recycle lithium batteries
Washington DC (SPX) Feb 08, 2017
Rechargeable lithium ion batteries power our phones and tablets they drive us from A to B in electric vehicles, and have many applications besides. Unfortunately, the devices that they power can fail and the batteries themselves are commonly only usable for two to three years. As such, there are millions batteries that must be recycled. Research published in the International Journal of En ... read more


ENERGY TECH
Electricity costs: A new way they'll surge in a warming world

Republican ex-top diplomats propose a carbon tax

Climate change may overload US electrical grid: study

Action is needed to make stagnant CO2 emissions fall

ENERGY TECH
Portable superconductivity systems for small motors

How to recycle lithium batteries

Researchers optimize the assembly of micro meso and macroporous carbon for Li-S batteries

Building a better microbial fuel cell - using paper

ENERGY TECH
British grid drawing power from new offshore wind farm

Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

Russia's nuclear giant pushes into wind energy

The power of wind energy and how to use it

ENERGY TECH
Powerful change: A profile of today's solar consumer

French government gets renewable energy endorsement

EU to phase out China solar panel duties

NREL research pinpoints promise of polycrystalline perovskites

ENERGY TECH
Explosion at French nuclear plant, 'no radiation risk'

Three new uranium minerals from Utah

Iran imports 149 tonnes of uranium from Russia: atomic chief

France's Areva picks up Japanese investors

ENERGY TECH
Alberta backing bioenergy programs

A better way to farm algae

DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

Cathay Pacific to cut emissions with switch to biofuel

ENERGY TECH
Iran on Total's radar for future growth

Oil sharply higher on OPEC compliance

Worker missing after New Orleans pipeline explosion

Rio Tinto hires from oil and gas talent pool

ENERGY TECH
Scientists argue current climate change models understate the problem

Researchers say climate models understate risk, ignore human factors

Cape Town pools crack down on splashing as drought bites

Gas hydrate breakdown unlikely to cause massive greenhouse gas release




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement