Subscribe to our free daily newsletters
  Energy News  




Subscribe to our free daily newsletters



ENERGY TECH
More durable, less expensive fuel cells
by Staff Writers
Newark DE (SPX) Sep 13, 2017


A team of UD engineering faculty members and department leaders brought their research groups together for a fuel cell innovation. This illustration includes Professors Ajay K. Prasad, Suresh G. Advani, Dionisios Vlachos and Yushan Yan.

A team of engineers at the University of Delaware has developed a technology that could make fuel cells cheaper and more durable, a breakthrough that could speed up the commercialization of fuel cell vehicles.

They describe their results in a paper published in Nature Communications on Monday, Sept. 4.

Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electrochemical reactions, leaving no pollution behind.

Materials called catalysts spur these electrochemical reactions. Platinum is the most common catalyst in the type of fuel cells used in vehicles.

However, platinum is expensive - as anyone who's shopped for jewelry knows. The metal costs around $30,000 per kilogram.

Instead, the UD team made a catalyst of tungsten carbide, which goes for around $150 per kilogram. They produced tungsten carbide nanoparticles in a novel way, much smaller and more scalable than previous methods.

"The material is typically made at very high temperatures, about 1,500 Celsius, and at these temperatures, it grows big and has little surface area for chemistry to take place on," said Dionisios Vlachos, director of UD's Catalysis Center for Energy Innovation.. "Our approach is one of the first to make nanoscale material of high surface area that can be commercially relevant for catalysis."

The researchers made tungsten carbide nanoparticles using a series of steps including hydrothermal treatment, separation, reduction, carburization and more.

"We can isolate the individual tungsten carbide nanoparticles during the process and make a very uniform distribution of particle size," said Weiqing Zheng, a research associate at the Catalysis Center for Energy Innovation.

Next, the researchers incorporated the tungsten carbide nanoparticles into the membrane of a fuel cell. Automotive fuel cells, known as proton exchange membrane fuel cells (PEMFCs), contain a polymeric membrane. This membrane separates the cathode from the anode, which splits hydrogen (H2) into ions (protons) and delivers them to the cathode, which puts out current.

The plastic-like membrane wears down over time, especially if it undergoes too many wet/dry cycles, which can happen easily as water and heat are produced during the electrochemical reactions in fuel cells.

When tungsten carbide is incorporated into the fuel cell membrane, it humidifies the membrane at a level that optimizes performance.

"The tungsten carbide catalyst improves the water management of fuel cells and reduces the burden of the humidification system," said Liang Wang, an associate scientist in the Department of Mechanical Engineering.

The team also found that tungsten carbide captures damaging free radicals before they can degrade the fuel cell membrane. As a result, membranes with tungsten carbide nanoparticles last longer than traditional ones.

"The low-cost catalyst we have developed can be incorporated within the membrane to improve performance and power density," said . "As a result, the physical size of the fuel cell stack can be reduced for the same power, making it lighter and cheaper. Furthermore, our catalyst is able to deliver higher performance without sacrificing durability, which is a big improvement over similar efforts by other groups."

The UD research team used innovative methods to test the durability of a fuel cell made with tungsten carbide. They used a scanning electron microscope and focused ion beam to obtain thin-slice images of the membrane, which they analyzed with software, rebuilding the three-dimensional structure of the membranes to determine fuel cell longevity.

The group has applied for a patent and hopes to commercialize their technology.

"This is a very good example of how different groups across departments can collaborate," Zheng said.

ENERGY TECH
A revolution in lithium-ion batteries is becoming more realistic
Kracrow, Poland (SPX) Sep 13, 2017
The modern world relies on portable electronic devices such as smartphones, tablets, laptops, cameras or camcorders. Many of these devices are powered by lithium-ion batteries, which could be smaller, lighter, safer and more efficient if the liquid electrolytes they contain were replaced by solids. A promising candidate for a solid-state electrolyte is a new class of materials based on lithium c ... read more

Related Links
University of Delaware
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
SLAC-led project will use AI to prevent or minimize electric grid failures

Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

ENERGY TECH
UW shatters long-range communication barrier for near-zero-power devices

Stanford professor tests a cooling system that works without electricity

Researchers challenge status quo of battery commercialization

A revolution in lithium-ion batteries is becoming more realistic

ENERGY TECH
French energy company to build wind power sector in India

Finding better wind energy potential with the new European Wind Atlas

Last of the 67 turbines for a British wind farm installed

Kimberly-Clark next U.S. company to draw more on renewables

ENERGY TECH
NREL investigates coatings needed for concentrating solar power

Chinese solar panel manufacturer claims a quarter of India's market

Scientists make atoms-thick Post-It notes for solar cells and circuits

French company Total steps into solar energy market

ENERGY TECH
Discovery could reduce nuclear waste by chemically reengineering molecules

Against rising headwinds, UK pushes ahead with nuclear projects

Russia's use and stockpiles of highly enriched uranium pose significant nuclear risks

EU parliament opposes bid to reduce testing of Fukushima food imports

ENERGY TECH
New biomaterial could replace plastic laminates, greatly reduce pollution

A new way to directly convert methane to methanol using gold-palladium nanoparticles

China aims to extend ethanol fuel usage countrywide by 2020

How well electron transport works in furfural biogas

ENERGY TECH
OPEC chatter pushes oil prices back into rally mode

LNG facility in Lithuania to open by year's end

Baker Hughes to improve Nigerian LNG reliability

Texas sees gains from gas exports to Mexico

ENERGY TECH
Climate risk classification created to account for potential 'existential' threats

Science denial not limited to political right

Canada Tory MP called out for referring to minister as 'climate Barbie'

US looks to work with Paris climate accord 'partners': Tillerson




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement