. Energy News .




.
ENERGY TECH
Manufacturing method paves way for commercially viable quantum dot-based LEDs
by Staff Writers
Gainesville FL (SPX) Sep 01, 2011

File image.

University of Florida researchers may help resolve the public debate over America's future light source of choice: Edison's incandescent bulb or the more energy efficient compact fluorescent lamp.

It could be neither.

Instead, America's future lighting needs may be supplied by a new breed of light emitting diode, or LED, that conjures light from the invisible world of quantum dots. According to an article in the current online issue of the journal Nature Photonics, moving a QD LED from the lab to market is a step closer to reality thanks to a new manufacturing process pioneered by two research teams in UF's department of materials science and engineering.

"Our work paves the way to manufacture efficient and stable quantum dot-based LEDs with really low cost, which is very important if we want to see wide-spread commercial use of these LEDs in large-area, full-color flat-panel displays or as solid-state lighting sources to replace the existing incandescent and fluorescent lights," said Jiangeng Xue, the research leader and an associate professor of material science and engineering "Manufacturing costs will be significantly reduced for these solution-processed devices, compared to the conventional way of making semiconductor LED devices."

A significant part of the research carried out by Xue's team focused on improving existing organic LEDs. These semiconductors are multilayered structures made up of paper thin organic materials, such as polymer plastics, used to light up display systems in computer monitors, television screens, as well as smaller devices such as MP3 players, mobile phones, watches, and other handheld electronic devices.

OLEDs are also becoming more popular with manufacturers because they use less power and generate crisper, brighter images than those produced by conventional LCDs (liquid crystal displays). Ultra-thin OLED panels are also used as replacements for traditional light bulbs and may be the next big thing in 3-D imaging.

Complementing Xue's team is another headed by Paul Holloway, distinguished professor of materials science and engineering at UF, which delved into quantum dots, or QDs. These nano-particles are tiny crystals just a few nanometers (billionths of a meter) wide, comprised of a combination of sulfur, zinc, selenium and cadmium atoms.

When excited by electricity, QDs emit an array of colored light. The individual colors vary depending on the size of the dots. Tuning, or "adjusting," the colors is achieved by controlling the size of the QDs during the synthetic process.

By integrating the work of both teams, researchers created a high-performance hybrid LED, comprised of both organic and QD-based layers. Until recently, however, engineers at UF and elsewhere have been vexed by a manufacturing problem that hindered commercial development.

An industrial process known as vacuum deposition is the common way to put the necessary organic molecules in place to carry electricity into the QDs. However, a different manufacturing process called spin-coating, is used to create a very thin layer of QDs. Having to use two separate processes slows down production and drives up manufacturing costs.

According to the Nature Photonics article, UF researchers overcame this obstacle with a patented device structure that allows for depositing all the particles and molecules needed onto the LED entirely with spin-coating. Such a device structure also yields significantly improved device efficiency and lifetime compared to previously reported QD-based LED devices.

Spin-coating may not be the final manufacturing solution, however.

"In terms of actual product manufacturing, there are many other high through-put, continuous "roll-to-roll" printing or coating processes that we could use to fabricate large area displays or lighting devices," Xue said.

"That will remain as a future research and development topic for the university and a start-up company, NanoPhotonica, that has licensed the technology and is in the midst of a technology development program to capitalize on the manufacturing breakthrough."

Other co-authors of this article are Lei Qian and Ying Zheng, two postdoctoral fellows who worked with the professors on this research. The UF research teams received funding from the Army Research Office, the U.S. Department of Energy, and the Florida Energy Systems Consortium.




Related Links
University of Florida
Powering The World in the 21st Century at Energy-Daily.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
A high-tech propulsion system for the next 100 years
Zurich, Switzerland (SPX) Sep 01, 2011
One of the most efficient means of transporting freight is by ship. However, many of the ships sailing today are powered by ageing diesel motors fitted with neither exhaust cleaning equipment or modern control systems. Three years ago the University of Birmingham initiated an ambitious trial, converting an old canal barge to use hydrogen fuel. The old diesel motor, drive system and fuel ta ... read more


ENERGY TECH
Uncertain trends mar Argentine energy plan

Japan to lift power-saving decree earlier than planned

Kyoto team suspends Romania from carbon market

Romanian official quits after carbon market suspension

ENERGY TECH
Shale gas could make S.African energy self-sufficient: Shell

China, Vietnam plan defence hotline: report

Manufacturing method paves way for commercially viable quantum dot-based LEDs

CO2 oilfield experiment has good results

ENERGY TECH
First market report on High Altitude Wind Energy

Researchers build a tougher, lighter wind turbine blade

Wind Power Now Less Expensive Than Natural Gas In Brazil

BMW to power Leipzig factory by wind energy

ENERGY TECH
First Nation Deploys Solar-Powered Airfield Lights

Enecsys shows micro inverters that double operating life of solar PV systems

Solar panels supply energy for CSULA's Engineering and Technology building

CH2M HILL Introduces New PV Economic Development Report

ENERGY TECH
China's nuclear power risky?

Sporian Developing Sensors for Generation IV Nuclear Systems

Argentina keen for more nuclear power

Japan nuclear no-go areas to last 'decades': media

ENERGY TECH
Biofuels Make a Comeback Despite Tough Economy

Farming commercial miscanthus

Cracking cellulose: a step into the biofuels future

Pretreatment, proper harvest time boost ethanol from switchgrass

ENERGY TECH
Chang'e-2 moon orbiter travels around L2 in outer space

China State media says Tiangong 1 to launch in early Sept

Orbits for Tiangong

Chinese orbiter launch failure will not affect unmanned space module launch

ENERGY TECH
UNHCR urges more aid to drought-hit Somalia to stem exodus

Climate cycles are driving wars

Amid government denials, Eritreans flee harsh drought

Emerging powers call for extending climate deal


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement