Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Energy News .




ENERGY TECH
Cheap, strong lithium-ion battery developed at USC
by Staff Writers
Los Angeles CA (SPX) Feb 14, 2013


File image.

Researchers at USC have developed a new lithium-ion battery design that uses porous silicon nanoparticles in place of the traditional graphite anodes to provide superior performance.

The new batteries-which could be used in anything from cell phones to hybrid cars-hold three times as much energy as comparable graphite-based designs and recharge within 10 minutes. The design, currently under a provisional patent, could be commercially available within two to three years.

"It's an exciting research. It opens the door for the design of the next generation lithium-ion batteries," said Chongwu Zhou, professor at the USC Viterbi School of Engineering, who led the team that developed the battery. Zhou worked with USC graduate students Mingyuan Ge, Jipeng Rong, Xin Fang and Anyi Zhang, as well as Yunhao Lu of Zhejiang University in China. Their research was published in Nano Research in January.

Researchers have long attempted to use silicon, which is cheap and has a high potential capacity, in battery anodes. (Anodes are where current flows into a battery, while cathodes are where current flows out.) The problem has been that previous silicon anode designs, which were basically tiny plates of the material, broke down from repeated swelling and shrinking during charging/discharging cycles and quickly became useless.

Last year, Zhou's team experimented with porous silicon nanowires that are less than 100 nanometers in diameter and just a few microns long. The tiny pores on the nanowires allowed the silicon to expand and contract without breaking while simultaneously increasing the surface area - which in turn allows lithium ions to diffuse in and out of the battery more quickly, improving performance.

Though the batteries functioned well, the nanowires are difficult to manufacture en masse. To solve the problem, Zhou's team took commercially available nanoparticles-tiny silicon spheres-and etched them with the same pores as the nanowires. The particles function similarly and can be made in any quantity desired.

Though the silicon nanoparticle batteries currently last for just 200 recharge cycles (compared to an average of 500 for graphite-based designs), the team's older silicon nanowire-based design lasted for up to 2,000 cycles, which was reported in Nano Lett last April. Further development of the nanoparticle design should boost the battery's lifespan, Zhou said.

"The easy method we use may generate real impact on battery applications in the near future," Zhou said.

Future research by the group will focus finding a new cathode material with a high capacity that will pair well with the porous silicon nanowires and/or porous silicon nanoparticles to create a completely redesigned battery.

.


Related Links
University of Southern California
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
New batteries can recharge in 10 minutes
Los Angeles (UPI) Feb 12, 2013
Researchers in California say they've developed a lithium-ion battery using nanoparticles that has more energy capacity and recharges more quickly. Scientists at the University of Southern California report using porous silicon nanoparticles in place of the traditional graphite anodes has yielded superior battery performance, holding three times as much energy as graphite-based designs ... read more


ENERGY TECH
Bulgarians protest high energy costs

Genscape Announces Strategic Partnership with Murex to Create Supply of QAP-A RINS

Diageo Transitions to 100 Percent Renewable Electricity at its North American HQ

China plans stricter fuel standards after smog

ENERGY TECH
IEA to improve Chinese oil demand stats

Queensland approves shale development

Russia to tap global LNG market

Can Leak Detection End the Pipeline Impasse

ENERGY TECH
Gone with the wind: French scheme targets farting cows

Mainstream Renewable Power Starts Building Wind Farm in Chile

Sabotage may have felled U.K. wind turbine

Hgcapital And Blue Energy Agree UK Wind Farm Investment Deal

ENERGY TECH
Panasonic Teams With Power-One For Solar Inverters

New world record efficiency for thin film silicon solar cells

New Material Promises Better Solar Cells

Locus Energy Launches Two New Major Platform Components

ENERGY TECH
Roof collapses at Chernobyl nuclear plant: Ukraine

Fukushima survivors to sue Japan government

Finland's TVO says reactor may be delayed until 2016

France debates nuke waste facility

ENERGY TECH
Newly discovered plant structure may lead to improved biofuel processing

Hydrothermal liquefaction - the most promising path to a sustainable bio-oil production

Scientists turn toxic by-product into biofuel booster

Reaping Profits from Landfill Biogas

ENERGY TECH
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

ENERGY TECH
Americans back climate change regulation, not taxes

Is climate change next for GOP?

Chemistry trick kills climate controversy

Security risks of extreme weather and climate change




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement